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Moment-Dependent Pseudo-Rigid-Body Models for Beam Deflection and Stiffness  

Diego Alejandro Espinosa 

ABSTRACT 

 

This thesis introduces a novel parametric beam model for describing the 

kinematics and elastic properties of ortho-planar compliant Micro-Electro-Mechanical 

Systems (MEMS) with straight beams subject to specific buckling loads. Ortho-planar 

MEMS have the ability to achieve motion out the plane on which they were fabricated, 

characteristic that can be used to integrate optical devices such as variable optical 

attenuators and micro-mirrors. In addition, ortho-planar MEMS with large output forces 

and long strokes could be used to develop new applications such as tactile displays, 

active Braille, and actuation of micro-mirrors. In order to analyze the kinematics and 

elasticity of a curved beam contained in a Micro Helico-Kinematic Platform (MHKP) 

device, this thesis offers an improved model of straight and curved flexures under 

compressive loads. This model uses an approach similar to the one applied to develop a 

regular Pseudo-Rigid –Body Model but it differs in the definition of a key parameter, the 

characteristic radius factor, γ, which is not a constant, but a function of the moment, 

( )Mγγ =ˆ . This approach allows for the Pseudo-Rigid-Body Model (PRBM) to describe 

the motion taken by the deflected beam precisely over a large range of motion. In 

developing the model, this thesis describes kinematic and elastic parameters such as the 
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angle coefficient, ϑC , the characteristic radius, γl, and the torque coefficient, Tθ. 

Furthermore, the torque coefficient is divided into two component functions, Tf, and, Tm, 

which can be used to find the working loads (force and moment) on the beam. The input 

displacement is the only needed state variable, object variables, which describe the beam, 

include the material modulus of elasticity, E, the moment of inertia, I, and its length, l.  
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Chapter 1 

 

Introduction 

Mechanisms are “mechanical devices use to transfer or transform energy, force, 

or motion [1, 2]. We can distinguish between rigid-body mechanisms, which are 

“systems of rigid links connected by movable joints” such as cams, lever, and gears and 

compliant mechanisms, which “gain some of their mobility from the deflection of flexible 

members rather than from movable joints only” [3]. Compliant mechanisms offer 

advantages such as cost reduction and performance improvements, which are achieved by 

increasing the precision and reliability of the mechanism, reducing wear, weight, 

maintenance, assembly time and the number of parts needed for assembly [3]. These 

advantages are particularly important in devices fabricated at the micro scale, known as 

Micro-Electro-Mechanical Systems (MEMS). 

MEMS technology offers ways to bridge fields that were previously unrelated, 

joining different branches of study such as biology and microelectronics. Some examples 

of the applications in which MEMS are currently being applied include biotechnology, 

where MEMS have facilitated new discoveries “such as Polymerase Chain Reaction 

(PCR) Microsystems for DNA amplification and identification, micro-machined 

Scanning Tunneling Microscopes (STMs), biochips for detection of hazardous chemical 

and biological agents, and micro-systems for drug screening and selection” [4]. MEMS 
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technology has also improved the overall performance of communication circuits and has 

reduced the cost and power consumption of such devices. Moreover, MEMS 

accelerometers are rapidly substituting for the conventional accelerometers used to 

trigger air-bag deployment systems in automobiles, due to their reliability, the ability to 

integrate the accelerometer and electronics in a single silicon chip, and reduction of the 

overall cost [4]. 

Generally MEMS are fabricated by depositing multiple planar layers of 

polysilicon, or polycrystalline silicon on a silicon wafer, then, by bulk micromachining, 

planar lithography is used to selectively etch and shaped the planar material layers into 

the micro-structure desired [3]. There are several challenges in the design phase and part 

assembly of mechanical devices at the micro level. Due to the planar nature of the 

fabrication process and the small scale in which MEMS are designed, it is hard to create 

hinges and pin joints that accurately move and stay in place. Additionally, it is also 

challenging to design three-dimensional motion devices that achieve their specific tasks 

without failing first. The performance of these devices greatly depend on the materials 

properties, yet the material choices for MEMS processes are very limited and their 

behavior and properties at the micro-scale are not completely understood [3]. 

Nevertheless, compliant mechanisms offer an answer to many of these problems due to 

advantages they offer in the designs of mechanisms at the micro level [5]. According to 

Clements [5] “Compliant MEMS: 

• Can be fabricated in a plane 

• Required no assembly 

• Required less space and are less complex 
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• Have less need for lubrication 

• Have reduced friction and wear 

• Have less clearances due to pin joints, resulting in higher precision 

• Integrate energy storage elements (springs) with the other components” 

One of the methods used to performed compliant beams deflection analysis is a 

mathematical approach based on elliptical integrals, a method that is difficult to use and 

does not produce much insight on the motion and the stiffness of the beam. 

Consequently, alternative methods have been found in order to make the analysis simpler 

and more intuitive. One of these methods is a parametric approximation model called the 

Pseudo-Rigid-Body Model (PRBM) in which the compliant mechanism is modeled by an 

analogue rigid mechanism [3]. Some of the weaknesses of this model are: 

• First, it only works on certain load and force configurations. 

• Second, for some long and thin beams it does not model the compliant beam 

deflection throughout its complete range of motion. 

•  Finally, it does not work on curved beams. 

 

1.1 Objective 

The objectives of this thesis are: 

• To create a more accurate parametric beam model for compliant MEMS using a 

rational function to represent the characteristic radius factor as a function of the 

moment load, γ̂ =γ(M). 

• Second, apply this model for the analysis of the kinematics and elasticity of the 

complete deflection range of motion of both straight and the curved beams. 
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• Third, find specific buckling loads on a compliant Micro Helico-Kinematic 

Platform (MHKP) device [6].  

• Finally, develop software codes in order to produce a new parametric model and 

provide validation of its capabilities see appendixes A, C, and E (ANSYS codes), 

B, D, and F (MATLAB codes). 

 

1.2 Motivation 

Ortho-planar mechanisms are a subclass of mechanisms that are manufactured in 

a single plane and have the ability to achieve motion out of that plane [7]. Ortho-planar 

MEMS can be used to “integrated optical devices such as variable optical attenuators, 

micro Fresnel lenses, micro grating, multiplexers, and micro-mirrors” [8]. In addition, 

ortho-planar MEMS with a high integration ability and capability of moving in the out-

plane direction with large output forces and long strokes could be used to develop new 

applications such as tactile displays, active Braille, and actuation of micro-mirrors [9]. 

Last but not least, ortho-planar MEMS could be implemented to developed new spatial 

light modulators [10] capable of manipulating optical wave fronts, which can be “used in 

image projectors, optical switching, and adaptive optics” [11].  

Planar kinematics has been the method of choice when designing ortho-planar 

MEMS, leaving the benefits of spherical kinematics largely unnoticed and unexplored. 

“Using spherical kinematics, it is possible to design devices that move links to specified 

spatial orientations and can covert rotation in one plane to rotation in a different plane” 

[11]. The intent of this work is to provide tools that can help design and analyze curved 
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beams, furthering and facilitating the exploration and development of new compliant 

ortho-planar MEMS using spherical kinematics. 

 

1.3 Scope 

The Micro Helico-Kinematic Platform (MHKP) is an example of an ortho-planar 

mechanism. It was designed using spherical kinematic techniques in which three 

spherical crank-sliders with the same center and with an in-plane rotational input are used 

to vertically translate (in the out-plane direction) and rotate a platform. Due to the nature 

of the input, this device does not produce side-to-side motion, which allows for a closed 

packed array of similar devices and provides large vertical translation of the platform [6], 

making it a good candidate for movable pixels mirror [8]. To improve the design, 

manufacture process, and overall performance of this device, the rigid links, movable 

pins joints, and hinges were replaced by their compliant analogues; however, the 

kinematic and elastic analysis of the compliant analogues is more challenging due to the 

absence of a spherical Pseudo-Rigid-Body Model for curved compliant beams loaded 

with buckling loads [12]. As a consequence, there was a need for a new spherical Pseudo-

Rigid-Body Model that would allow us to accurately analyze the kinematic and elastic 

behavior of the MKKP curved compliant beams. 

This thesis introduces a novel parametric model for the kinematics and the elastic 

analysis of curved compliant beams using specific buckling loads. It focuses on the 

development of model parameters needed to accurately describe the behavior of a curved 

beam as it is deflects. Consequently, one can use this new model to accurate describe the 
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kinematics of the deflected MHKP’s curved beams and computed the loads needed to 

actuate the device. 

 

1.4 Contributions 

The major contributions made by this research work in the analysis and design of 

compliant beams include:  

• A novel parametric beam model for the kinematic analysis of buckled beams, 

where characteristic radius factor, γ , is a function of the moment load, γ̂ =γ(M). 

• Improvements in accuracy and range of this model compared with previous 

models by using a rational function model. 

• The development of non-dimensional kinematic and elastic parameters, the angle 

coefficient, ϑC , the characteristic radius factor, γ, and the torque coefficients, Tθ, 

Tf, and, Tm, that when combined with object data, the modulus of elasticity, E, the 

moment of inertia, I, the length of the beam, l, and state information, such as the 

input displacement, d, or the input rotation, Φ, can be use to determine the 

buckling behavior of the beam. 

• This thesis also describes finite element analysis (FEA) procedures that were 

used to develop and validate the new parametric beam model.  

• This thesis computes specific buckling loads needed to actuate a compliant Micro 

Helico-Kinematic Platform (MHKP) device. 

• This thesis establishes the coordinates of the highest point reached by the MHKP 

once it is buckled. 



www.manaraa.com

 

7 

• Finally, this work provides MATLAB codes used to analyze the output data 

produced by the finite element analysis, derive and validate the new parametric 

model, and obtain the kinematic and elastic parameters. 

 

1.5 Roadmap 

This first chapter has introduced the work developed in this thesis. Chapter 2 

provides the background of PRBMs and spherical kinematics. Chapter 3 explains the 

relationships between a planar PRBM and a spherical PRBM. It also describes the 

approach taken to develop the new parametric beam model and its outcomes. Chapter 4 

gives an overview of the principle of virtual work and how it was used to develop the 

torque coefficient, Tθ, and its components, Tf, and, Tm. Finally, Chapter 5 discusses the 

results and validation and provides the conclusions.  
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Chapter 2 

 

Background 

This chapter reviews previous work on Pseudo-Rigid-Body Models and spherical 

trigonometry. These are explained in detail because they are the starting point for this 

work and their overall understanding is essential for an easier comprehension of the 

details in this thesis. 

 

2.1 Pseudo-Rigid-Body Model  

In the past, elliptic integrals have been used to analyze end-loaded large 

deflection cantilever beams in order to obtain closed-form solutions [3]. However, this 

mathematical approach is difficult to use and produces little insight about the motion or 

stiffness of the beam. As a result, alternative methods of determining the beam deflection 

path have been developed, one of these is a parametric approximation model called the 

Pseudo-Rigid-Body Model (PRBM). This method consists in describing the compliant 

member’s motion and stiffness by replacing it with a rigid-link analogue that has 

approximately the “same motion and stiffness for a known range of motion and to a 

known mathematical tolerance” [13]. In other words, the PRBM “provides a simplified 

but accurate method of analyzing the deflection of flexible beams and provides the 

designer a means of visualizing the deflection” [3], meaning that given a compliant beam, 
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its motion can be found by treating it as a mechanism with rigid links or given a specific 

motion, a PRBM that performs the same motion can be developed and transformed into 

its compliant analogue [13]. After the identification of the PRBM of the compliant 

member, its kinematic and elastic parameters are optimized and validated so that its range 

of applicability and level of error are known and acceptable [13]. 

 

2.2 Kinematics of the Pseudo-Rigid-Body Model 

This PRBM approach is based on the fact that the deflection of the beam’s free 

end follows a near-circular path with a center of curvature located at a point on the un-

deflected beam [3]. This allows the PRBM to determine “the relative positions of the end 

points of various compliant segments without precise modeling of the locations of 

interior points [8]. In addition, the PRBM is used to compute the amount of force 

required to achieve the desired deflection. An example of a PRBM for a straight 

cantilever beam with a vertical end load [3] is shown in Figure 2.1. This model was 

developed by Howell et al. [3,14] and is shown here to provide context for the current 

research. 
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Figure 2.1. A compliant cantilever beam with beam tip at x=a and y=b. Adapted from [3] 
 

 
Figure 2.2. The PRBM of a compliant cantilever beam. (See Figure 2.1) adapted from [3] 
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Figure 2.1 shows the compliant cantilever beam and the large-deflection path of 

the beam end and Figure 2.2 shows a Pseudo-Rigid-Body Model that approximates the 

nearly circular path of the beam end. The Pseudo-Rigid-Body Model is created with two 

rigid links joined at a point along the beam called the characteristic pivot. The location of 

the characteristic pivot is chosen so that the path of the beam end of the rigid model 

matches, as closely as possible, the path of the beam end of the compliant beam. The 

distance from the beam end to the characteristic pivot is called the characteristic radius, 

γl, where the constant, γ, is named the characteristic radius factor. The angle Θ, known 

as the Pseudo-Rigid-Body angle is the amount of rotation that the rigid link must undergo 

to match the deflection of the compliant beam. Furthermore, the angle of inclination of 

the compliant beam at the beam end is given by 0ϑ . In addition, the horizontal (x-

coordinate) and the vertical (y-coordinate) coordinates of the end of the deflected beam 

are represented by the variables a and b, respectively, which are given in terms of the 

PRBM angle, Θ, in equations (2.1) and (2.2) Thus, the value of Θ can be calculated using 

equation (2.3). The relation between Θ  and 0ϑ  is represented by (2.4), where ϑC  

represents the angle coefficient with a value of 1.24. 

( )Θ−−= cos11 γ
l
a

    (2.1) 

Θ= sinγ
l
b

     
(2.2) 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=Θ −

γ1
tan 1

la
b

    (2.3) 

Θ= ϑϑ C0      (2.4) 
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where ϑC represents the angle coefficient with a value of 1.24. 

In a research monograph by Howell [14], the characteristic radius factor, γ, was 

found by establishing the maximum acceptable percent error in the deflection at 0.5% 

equation (2.5); then, optimization was used to determine the value of γ  that allows for a 

maximum value of PRBM angle, Θ, without violating the maximum error constraints. It 

was determined that an optimal value of γ is 0.8517, which maintains an error smaller 

than 0.5% at angular deflections less than Θmax=64.3°. 

( ) maxmax 0 Θ<Θ<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤=Θ forerrorerrorg

ee εε
   (2.5) 

Where 
e

error
ε

represents the error of the relative deflection between the PRBM 

and the compliant member and eε  represents is the vector difference of the deflected 

position of the beams end point and its undeflected position. 

 

2.3 Elasticity of the Pseudo-Rigid-Body Model 

In order to model the elasticity of the material and its resistance to deformation, a 

torsional spring with a constant spring-rate, K, is placed at the characteristic pivot, as 

shown in Figure 2.2. When a load is applied to a PRBM link at an angle,ϕ , the 

component of the force orthogonal to the beam’s surface and tangent to the end point’s 

path is represented by Ft, which is defined by equation (2.6) [3]. 

( )
l

KFFt γ
ϕ Θ

=Θ−= sin     (2.6) 
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This transverse force, Ft, is responsible for the initial deflection of the rigid link, 

and creates a torque, T, about the characteristic pivot. 

    lFT tγ=       (2.7) 

Substituting (2.6) in (2.7) yields the torque required to deflect the flexural beam in 

terms of the constant spring-rate, K, and the PRBM angle, Θ. 

Θ= KT       (2.8) 

The value of the torsional spring constant spring-rate, K, can be calculated as a 

function of the geometry of the beam, I/l, its material properties, E, the PRBM constants, 

γ,and the nondimensionalized spring constant, Kθ, defined as the stiffness coefficient, 

equation (2.9). 

l
EIKK θγ=      (2.9) 

Kθ  allows for an easy calculation of the force necessary to deflect the Pseudo-

Rigid-Body Model; this force is approximately equal to the force required to deflect the 

compliant member equation (2.10), however, the elastic portion of the PRBM yields a 

Θmax (Kθ)<58.5° in order to have an accurate force prediction [15]. 

2l
EIKFt

Θ
= θ       (2.10) 

 

2.4 Trigonometric Relationships Between Planar and Spherical Mechanisms 

This section reviews the basics of spherical trigonometry and introduces Napier’s 

rules, which later are used to analyze spherical triangles. 
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Planar mechanisms are those in which joints axes are parallel and links are 

defined by the lengths between joints; in contrast, spherical mechanisms are those in 

which the joints axes intersect at the center of a sphere and links are defined by their 

great circles arcs [16]. A great circle is defined as one that has a radius equal to the radius 

of the sphere, and it is contained within a plane that intersects the sphere. For example, 

the earth longitudinal circles are great circles; the only latitudinal circle that is a great 

circle is the equator, which shares the same radius as the earth. Moreover, the angles 

between the planes containing the great circles are defined as dihedral angles. 

Relationships between planar and spherical configurations can be developed [17], often 

allowing the application of familiar planar kinematics concepts to spherical 

configurations. In spherical trigonometry the surface is not flat; instead, it is the curved 

surface of a sphere, where neither straight lines nor planar figures can be drawn [8]. 

However, “there are geometrical features on a spherical surface that have properties 

mathematically similar to their planar counterparts” [8]. For instance, a circle arcs drawn 

on a surface of a sphere possesses similar mathematical properties as a straight line drawn 

on a plane; furthermore, angles between intersecting circles can become analogues to the 

angles formed by straight lines [18]. These types of similarities allow the application of 

similar relationships and trigonometric rules, such as the Law of Sines, Law of Cosines, 

and rules for spherical right triangles, (Spherical triangle in which one of the dihedral 

angles is 90°). The following procedure follows Spiegel and Liu’s work [17] to describe 

the analogies between spherical trigonometry and plane trigonometry. During the 

discussion of these laws it is important to follow the nomenclature and differentiate 

between dihedral angels denoted by Greek letters, segment of great circles (arcs) denoted 
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by lower-case roman letter, and the points on great circles denoted by upper-case roman 

letters. The measurement of the dihedral angles and the great circles segments can be 

given in degrees or radians in order to facilitate the description of the spherical analogues 

of the Law of Sines and the Law of Cosines, simplified relations for spherical right 

triangles, and allows for the derivation of general results, which are independent of the 

radius of a particular sphere. 

A spherical triangle is shown in Figure 2.3, where the arcs and the dihedral angles 

can be related by the Laws of Sines and Cosines. 

 

 
Figure 2.3. Spherical triangle with sides k, m, and n; and dihedral angles ,ϑ

σ, and ζ. Adapted from [8] 
 

The spherical Law of Cosines can relate the arcs and the dihedral angles in the following 

ways: 
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• Three arcs and one dihedral angle 

( ) ( ) ( ) ( ) ( ) ( )σθ sinsinsincoscoscos nmnm +=    (2.11) 

• Three dihedral angles and one arc 

( ) ( ) ( ) ( ) ( ) ( )ksinsinsincoscoscos ζϑξϑσ +−=   (2.12) 

The spherical Law of Sines can relate two arcs and their respective opposing dihedral 

angles. 

( )
( )

( )
( )

( )
( )σϑζ sin

sin
sin
sin

sin
sin kmn

==     (2.13) 

A spherical right triangle is one whit at least one 90° dihedral angle, ζ, two other 

dihedral angles,ϑ  and σ, and three arcs, k, m, and n, where n represents the hypotenuse 

of the spherical right triangle. If any two of these five parameters are known, one can find 

a third using Napier’s Rules in spherical trigonometry. Napier’s Rules are based on 

Figure 2.4, which arranges all five parameters around a circle. The hypotenuse and the 

two non-right dihedral angles carry the prefix “co”, which represents the complement of 

the angle. Any segment of the circle can be consider as a middle part, the adjoining 

segments, are defined as the adjacent parts, and the two remaining segments are defined 

as the opposite parts. 
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Figure 2.4. Napier’s Circle for a spherical right triangle with a right angle ζ. Adapted 

from [17] 
 

Napier’s Rules summarizes ten equations that describe the relationships between 

any set of three of the five parameters in the Napier’s Circle. The rules are: 

• Rule 1: The sine of any middle part equals the product of the tangents of the 

adjacent parts. 

• Rule 2: The sine of any middle part equals the product of the cosines of the 

opposite parts. 

For instance, using Napier’s Rules the value of k gives for Rule 1: 

( ) ( ) ( ) ( ) ( )mmcok tancottantansin ϑϑ =−=    (2.14) 

and for Rule 2: 

( ) ( ) ( ) ( ) ( )σσ sinsincoscossin nconcok =−−=   (2.15) 
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2.5 Closure 

This chapter has reviewed previous work on the Pseudo-Rigid-Body Model 

developed by Howell and the basics of spherical trigonometry. In the next chapter those 

concepts will used to develop new parametric beam models for straight and curved 

beams.  
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Chapter 3 

 

Methodology and Model Development 

This section explains the theoretical approach taken for the straight beams 

deflection kinematic analysis. The notation of the variables of curved beam variables 

change due to the spherical nature of the beam and the need to expresses many of the 

variables as angles. However, there is a correspondence principle between planar and 

spherical PRBMs, which states that “when small angle assumption is used for spherical 

arcs i.e. the arc length is much smaller than the radius of the sphere, the spherical PRBM 

become identical to a planar PRBM.” [12]. For instance, the arc length, β, can be express 

to the planar length, b. Thus by small angle assumption: 

( ) 1cos =β      (3.1) 

( ) b→= ββsin     (3.2) 

In the same way, the planar equivalents of α and λ are a and l respectively. 

Additionally, the terminology used to represent angles and ratios such as Θ, γ, in 

spherical and planar PRBMs is the same for both cases. See Table 3.1. 

The theoretical approach exposed in section 3.2 is analogues to the one of the 

curved beam. For practical reasons the equations on this section are only express on 

terms of the straight beam variables. The curved beam kinematic analysis will be study in 

more depth in sections 3.4, 3.5, and 3.6. 
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Table 3.1. Notation of straight beam and curved beam variables. 
Parameter Straight beam Curved Beam 

Characteristic radius factor γ γ 
Length/Arc-length l Rλ  

End-beam x-coordinate b β 
End-beam y-coordinate a α 

Pseudo-Rigid-Body angle Θ Θ 
 

3.1 Theoretical Approach of Novel Parametric Beam Model for Straight and 

Curved Beams Kinematic Analysis  

In this work, a different approach is implemented for finding the characteristic 

radius factor, γ , of straight and curved compliant beams with large deflections. It is 

possible to regard equations (2.1) and (2.2) as definitions of γ∗ and Θ∗, rather than a 

convenient approximation. Thus, given the coordinates of the beam end, a and b, for a 

particular load condition, the values of γ∗ and Θ∗ can be found that satisfy equations (2.1) 

and (2.2) for that load. 

By squaring equations (2.1) and (2.2), γ* (3.3) and Θ* (3.4) are defined in terms of 

a and b, as: 

( )
2

222
*

22
2

lal
blala

−
++−−

=γ     (3.3) 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=Θ −
*

1*

1
tan

γla
b     (3.4) 

The crucial difference between this approach and Howell’s method is that γ* is not 

a constant value throughout the deflection motion. Rather, it is a function of the load that 

allows for the PRBM to describe a closer approximation of the motion taken by the 

deflected beam. As a result, it is required to find a function that can closely match the 
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behavior of γ* as the beam deflects and will not add significantly more complexity to the 

analysis of the PRBM. Our solution to that problem is to implement a rational function 

model that will fit the behavior of γ*. This type of function was chosen over a polynomial 

function because of its numerous mathematical advantages, some of which include, the 

qualitative superiority of a rational function over a polynomial function [19], and its 

ability to fit complex shapes while keeping a low degree in both the numerator and 

denominator. This means that the function will required fewer coefficients giving it a 

relative simple form. Some other advantages of rational functions [20] include: 

• Excellent interpolatory properties and extrapolatory powers. 

• The tendency to be smoother and not as oscillatory as a polynomial functions. 

• Accurate asymptotic properties, they can model a function not only within the 

domain of the data but also to represent theoretical/asymptotic behavior outside 

the domain of interest. 

It is possible to created an expression of γ(M), which contains both positive and 

negative powers of M. For example, we can approximate: 

( ) ( ) 2
210

1
22

1ˆ MbMbb
M
b

M
bMM ++++=≈ −

−γγ
   

(3.5) 

Where, 

iM = ith value of nondimensionalized M from data 

*
iγ = value of γ calculated form ai and bi from equation (3.1) 

iγ̂ = ( )iMγ̂ = Rational fit to *
iγ  

In order to find the coefficients (bi) 
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Let, 

[ ]TbbbbbB 21012 −−=
r

    (3.6) 

[ ]BXi

r
=γ̂      (3.7) 

Where, 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
2

2
2

2
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1
2

1

111
1

111
1

111

nn
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ii
ii
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MM

MM
MM

MM
MM

X

MMMM

MMMM

    

(3.8) 

Using the method of least squares to find B
r

,  

[ ] [ ]( ) [ ] *1

i
TT XXXB γ

−
=

v

    (3.9) 

Once ib  is known, equation (3.5) can be used to find ( )MBγ̂  . Then, the Pseudo-Rigid-

Body angle, *
BΘ , can be found. 

( ) 2
212

01
2ˆ MbMb

M
b

M
b

bMB ++++= −
−γ    (3.10) 

( )( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=Θ −

Mla
b

B
B γ̂1

tan 1*     (3.11) 

In order to determine how well the parametric model, ( )MBγ̂ , truly represents 

the data, statistical analysis a two-sided t test with a 95% confidence interval and the 

coefficient of determination 2
BR  were performed. The 2

BR  is used to determine a 

proportion of the variance of one variable that is predictable from another variable; in 

addition, its measurement allows determination of how certain one can be in making 
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predictions based on certain model/graph. In other words, it represents the percent of the 

data that is closest to the line of best fit. The coefficient of determination is defined as the 

ratio of the explained variation to the total variation [21, 22]. 

( )2* )(ˆ MBB γγε −=      (3.12) 

( )2**
iiSST γγ −Σ=      

(3.13) 

( )2
iBSSE εΣ=

      
(3.14) 

sPodataofNumber
SSE

B int
2 =σ

    

(3.15) 

SST
SSE

R B
B −= 12

     
(3.16) 

Where 2
Bσ , represents the variance, Bε ,represent the squares explained, SSE represents 

the sum of the squares explained (explained variance), and SST represents the total sum 

of the squares (total variance). Then one can find the covariance matrix using, 

[ ] [ ]( ) 21

B
T XXVarB σ

−
=     (3.17) 

However, computation of the variance of the coefficients of B
r

 is complicated because 

VarB is not a diagonal matrix (i.e. the basis functions chosen for X are not orthogonal). 

We can find an orthogonal set of basis functions by finding the eigenvectors of ( ) 1−XX T , 

which is a symmetric matrix and has eigenvalues that are real and its eigenvectors are 

orthogonal. 

We express the eigenvectors as an orthogonal (rotation) matrix of eigenvectors 

and the eigenvalues as a diagonal matrix such that: 

( ) VDVXX T =
−1

    (3.18) 
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Where, 

V= Eigenvectors matrix 

D= Diagonal Eigenvalues matrix 

We then can change the set of basis functions from the non-orthogonal set in X to an 

orthogonal set in X2, where  

[ ]VXX =2      (3.19) 

We can find the coefficients in the orthogonal basis by computing 

[ ] [ ]( ) [ ] *
2

1

22 i
TT XXXC γ

−
=

r

    
(3.20) 

Then, the parametric model’s function for the characteristic radius factor and the PRBM 

angle functions becomes 

( ) 2ˆ XCMC

r
=γ      (3.21) 

( )( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=Θ −

Mla
b

C
C γ̂1

tan 1*    (3.22) 

The statistical two-side t test and the examination of the coefficient of determination 2
CR

can now be performed using the new variables 

( )2* )(ˆ MCC γγε −=     (3.23) 

( )2**
iiSST γγ −Σ=     

(3.24) 

( )2
iCSSE εΣ=

     
(3.25) 

valuesdataofNumber
SSEC

C =2σ
   

(3.26) 

SST
SSE

R C
C −= 12

    
(3.27) 
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It can be shown that 

BVC T=
r

     
(3.28) 

 and that: 22
BC σσ =  because 2X  is a orthogonal transformation (rotation) of X and 

det(V)=1. 

Therefore, the variance of C is: 

[ ] [ ]( ) 21

22 C
T XXVarC σ

−
=    (3.29) 

or 

21
CDVarC σ−=     (3.30) 

because VarC is a diagonal matrix, the standard deviation of ith component of C
r

 can be 

found as: 

iii VarCC ±      (3.31) 

or 

iCiC ,σ±
     

(3.32) 

Where the standard deviation of the ith component of C
r

 is the square root of the matrix 

element in the ith row and the ith column of VarC. 

iiiC VarC=,σ
    

(3.33) 

from equation (3.25), it can then be shown that variance, 2
,iBσ  and the standard deviation 

iB,σ  of the ith element of B are related to the standard deviation, Cjσ , of the coefficients 

jC  of the orthogonal basis the elements by: 

( )22
, CjijiB V σσ =

    
(3.34) 
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2
, BiiB σσ =

     
(3.35) 

Once the variance and the standard deviation have been found, one can proceed to 

perform a two-sided t test with a confidence interval of 95%; these interval estimates are 

often useful because the accuracy of estimate of the mean varies. The confidence interval 

generates a lower and upper limit for the mean which gives an indication of how much 

uncertainty there is in the estimate of the mean. The narrower the interval, the more 

precise the estimate is [23]. 

 

3.2 Computational Approach for Straight Compliant Beam Deflection  

Two models of straight beams with different loading conditions were developed 

using FEA in order to obtain the data required to create the PRBM of each mechanisms 

(Case 1: Vertical end-load and Case 2: Horizontal buckling end-loaded). The horizontal 

buckling end-loaded case was considered because: 

• Most of the PRBMs developed before focused only on cantilever beams vertically 

end-loaded. In addition, the PRBM for a beam with specific horizontal buckling 

end-loads has only been published for a beam with initial curvature. Reason 

being, the used of a constant γ does not yield accurate results for this type of 

problems. As a result, it was desired to develop a new PRBM for horizontal 

buckling end-loaded beams and study their behavior. 

• A PRBM for horizontal buckling end-loaded beams will help to study the legs of 

Micro Helico-Kinematic Platform device, which are loaded with horizontal 

buckling loads.  
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The geometry and the material properties of the beams were defined as follows. 

(See appendixes A and C). 

 

Table 3.2. Object data for FEA. 
 Case 1: 

Vertical end-load 
Case 2: 
Horizontal end-load 

Length, l 25 μm 100 μm 
Width, w 10 μm 10 μm 
Thickness, t 1 μm 1 μm 
Modulus, E 169 GPa 169 GPa 

 

The reason why there is a difference between the lengths of the two cases is 

because the beam in Case 2 is being buckled and just a fourth of the beam is analyzed this 

will be explained in further detail later in this chapter. 

The ANSYS 3D beam element beam4 was used on these models; in order to take 

into account the complete 3D flexibility of the beams. In other words, the bending 

deformations, axial deformations, and torsional deformations occurring on the two 

principal bending planes were allowed for these analyses. 

For Case 1 the boundary conditions defining this model were specified as follows. 

Node1 at the beginning of the beam was constrained in all directions so it remained fixed 

throughout the deflection motion. A vertical displacement was applied to node 5, rotation 

about the y-axis and translation on the x and z-directions were allowed, all other degrees 

of freedom were constrained. Moreover, the remaining nodes on the beam were left 

unconstrained allowing the observation and analysis of the beam’s motion as it was 

deflected see Figures 3.1 and 3.2. 
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Figure 3.1. Shows the undeflected position of the beam Case 1. 

 

 
Figure 3.2. Shows the deflected position of beam Case 1. 
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For Case 2, the boundary conditions were identical to those of Case 1 with the 

exception that node 5 at the end of the beam was allow to move in x-direction and all 

other translations and rotations were prevented, resulting in the motion shown in Figures 

3.3 and 3.4. 

 
Figure 3.3. Shows the undeflected position of the beam Case 2. 
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Figure 3.4. Shows the deflected position of beam Case 2. 

 

The different loading conditions cases were defined as follows. Case 1 includes a 

vertical displacement load applied perpendicularly to the beam’s end. Case 2 includes a 

buckling horizontal displacement applied horizontally to the beam’s end as well. In both 

cases the beam’s moving end was represented by node 5, which displacement caused the 

translation and rotation of the rest of the nodes, the deflection of the beam, and reaction 

forces to take place at node 1 and node 5. This information was collected over a range of 

300 load steps in an ANSYS data output file. This file contains the displacements of the 

nodes in the x, y, and z directions, their rotations about the x, y, and z axes, their reaction 

forces in the x, y, and z directions, and their reaction moments about the x, y, and z axes 

as the beams were deflected. 

Once the ANSYS information was acquired, an analysis program was written in 

MATLAB; this program used the output information file from ANSYYS to develop the 
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new parametric beam model introduced in Section 3.2 (see appendixes B and D). This 

part of the model predicts the kinematic behavior of the deflected beams. 

 

3.3 Kinematic Analysis Results Large Deflection Straight Beams 

This section provides a summary of the kinematic analysis of the deflection of a 

straight beam under different loading conditions.  

For a vertical end-loaded beam Case 1, Howell’s model, which uses a constant 

characteristic radius factor, γ, is accurate when the force acting on the beam is 

perpendicular to its neutral axis. However, as the end of the beam deflects and rotates, 

more of the beam becomes parallel to the direction of the applied load, and the accuracy 

of the values predicted by his PRBM decreases dramatically. In other words, a PRBM 

that uses a constant γ works well for the initial part of the deflection and its accuracy 

diminishes as the beam undergoes larger deflections as shown in Figure 3.5. On the other 

hand, in our new model, which uses a characteristic radius factor defined as a rational 

function of the moment, ( )Mγγ ˆˆ ≈ ,with coefficient constants bi, Table 3.3 the predicted 

values remain accurate throughout most of the deflection range. 

  

Table 3.3. Values of the rational function coefficients for Case 1: Vertical end-
load.  

 Rational function Coefficients 
b-2 8.2e-1 
b-1 1.0e-4 
b0 -1.0e-5 
b1 4.1e-1 
b2 -1.9e-1 

 



www.manaraa.com

 

32 

 
Figure 3.5. γ versus moment for Case 1: Vertical end-load. 

 

Figure 3.6 shows the different PRBM approximations of the end-beam deflection 

path. As the beam’s vertical deflection becomes large, significant portions of it become 

parallel to the applied force, this causes the beam to elongate as is shown in the final 

vertical height being larger than the original length of the beam. Consequently, the 

PRBM using the constant γ does not describe the complete deflection motion nor the 

elongation of the member; in contrast, the new parametric model approximation is able to 

accurately describe the complete path of the end-beam and its elastic deformation. 
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Figure 3.6. Case 1: Vertical end-load horizontal and vertical position of beam end. 

 

Figure 3.7 shows the approximation of the PRBM angle, Θ, found with the 

different parametric models. During the initial deflection motion of the beam, the PRBM 

using a constant γ exhibits an accurate prediction of the PRBM angle; however, as the 

deflection progresses the accuracy of this model diminishes giving a larger percent error 

for the prediction. Conversely, the new parametric model shows a constant and accurate 

prediction of the PRBM angle throughout the complete deflection of the beam. 
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Figure 3.7. Case 1: Vertical end-load moment  versus Θ . 

 

A statistical analysis was performed to determine how well the new parametric 

model predicts the kinematics of the beam. Consequently, a two-sided t test with a 95% 

confidence interval was developed; Figure 3.8 shows the characteristic radius factor 

within the 95% confidence interval. The coefficient of determination 2
BR was calculated to 

measure the amount of certainty of the model prediction, the rational function prediction 

maximum error and total error, and the constant g prediction total error in the deflection 

approximation were also calculated as shown in Table 3.4. 

The 95% confidence interval produces an upper and lower limit for each 

coefficient of the rational function used in the PRBM to model the beam. This interval 

indicates how much uncertainty there is in the estimate of the mean; the narrower the 

interval, the more precise is the estimate. The coefficient of determination 2
BR  represents 
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the percentage of data that is closest to the line of best fit describing how certain one can 

be in making a prediction using our model. Finally, the total error represents the error in 

the kinematic prediction of our model compared to the actual data provided by the FEA 

analysis. 

 

 
Figure 3.8. Shows the characteristic radius factor within the 95% confidence interval for 

Case 1: Vertical end load. 
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Table 3.4. Results of statistic analysis for a vertical end load. 
 Rational function 

Coefficients 
95% Confidence Interval 

b-2 8.2e-1 ± 3.9e-3 
b-1 1.0e-4 ± 5.0e-4 
b0 -1.0e-5 ± 1.0e-5 
b1 4.1e-1 ± 1.2e-2 
b2 -1.9e-1 ± 1.2e-2 
Coefficient of Determination, 2

BR  99.48% 

Rational Function Prediction Maximum Error 0.1495e-1 % 
Rational Function Prediction Total Error 2.7994e-3 % 

Constant γ Total Error 0.3160 % 
 

In Case 2, where a straight beam was loaded with specific horizontal buckling 

loads, just the first fourth segment of the beam was analyzed, that is from node 1 to node 

2 as shown in Figures 3.3 and 3.4. This approach describes a cantilever beam loaded 

horizontally and at the same time permits the description of the buckled beam using 

symmetry. After testing with a constant-γ PRBM it was noticed that a constant γ does not 

produce an accurate PRBM for the initial part of the beam deflection. Interestingly, the 

constant γ PRBM approximation improves when the beam deflects sufficiently, so that 

the force is more perpendicular to the neutral axis of the beam. Furthermore, when γ is 

represented as a function of the load, i.e. as ( )Mγγ ˆˆ ≈ , a more accurate PRBM can be 

achieved throughout the whole range of the deflection. That is, regardless of the direction 

of the load or if the beam is being evaluated at the beginning or at the end of its 

deflection, ( )Mγγ ˆˆ ≈  with coefficient constants bi Table 3.5, can always produce an 

accurate PRBM for the prediction of the beam behavior Figure 3.9. 
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Table 3.5. Values of the rational function coefficients for Case 2: Horizontal 
buckling end-load. 

 Rational function Coefficients 
b-2 8.216e-1 
b-1 -1.27e-2 
b0 -1.0e-4 
b1 -1.72e-2 
b2 -6.0e-3 

 

 
Figure 3.9. γ  versus moment for Case 2: Horizontal buckling end-load. 

 

Figure 3.10 shows the parametric approximations of the end-beam deflection path 

of the beam loaded with specific buckling loads. The new model is able to improve the 

accuracy of the PRBM in comparison with a constant γ model. 
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Figure 3.10. Case 2: Horizontal buckling end-load, horizontal and vertical position of 

beam end. 
 

Figure 3.11 shows the approximation of the deflected member PRBM angle, Θ. 

Once again, the new parametric model demonstrates more accurate large deflection 

kinematic model predictions than a PRBM using the constant γ . 
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Figure 3.11. Case 2: Horizontal buckling end-load moment  versus Θ . 

 

For Case 2 a statistical analysis was performed as well; a two-sided t test with a 

95% confidence interval was developed; Figure 3.12 shows the characteristic radius 

factor within the 95% confidence interval. The coefficient of determination 2
BR , the 

rational function prediction maximum error and total error, and the constant γ prediction 

total error in the deflection approximation were also calculated as shown in Table 3.6. 
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Figure 3.12. Shows the characteristic radius factor within the 95% confidence interval for 

Case 2: Horizontal buckling end-load. 
 

Table 3.6. Results of statistic analysis for a horizontal buckling end-load. 
 Rational function 

Coefficients 
95% Confidence Interval 

b-2 8.216e-1 ± 3.0e-43 
b-1 -1.27e-2 ± 1.0e-5 
b0 1.0e-4 ± 1.0e-5 
b1 -1.72e-2 ± 2.5e-3 
b2 6.0e-31 ± 2.4e-3 

Coefficient of Determination, 
2
BR  

99.96% 

Rational Function Prediction Maximum Error 0.1704e-5 % 
Rational Function Prediction Total Error 1.6502e-7% 

Constant γ Total Error 0.3187 % 
 

A PRBM for a beam with specific horizontal buckling end-loads has only been 

previously published for a beam with initial curvature. This is because a constant γ , 

which was used for previous PRBMs does not yield accurate results. Consequently, 
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taking this new approach, we can improve the accuracy of the PRBMs for the analysis of 

end-loaded cantilever beams undergoing large deflections [24]. 

 

3.4 Computational Approach for Curved Compliant Beam Deflection 

A model of a curved beam was developed in ANSYS in order to obtain the data 

required to create the PRBM of a spherical mechanism. The geometry and the material 

properties of the beam were defined as follows. 

 

Table 3.7. Object data for FEA of curved beams. 
 Data Comments 
Arc angle, λ 15°, 30°, 45°, 60°, 75°, and 90° Different arc angles were use in 

order to broaden the analysis of 
curved beams and develop a 
model that would work with any 
arc angle. 

Arc Length, s 10 The arc length was held 
constant throughout the 
analysis. 

Radius, R 
λ
s

 
The radius was defined as a 
function of the arc angle. 

Width w 
20
s

 
 

Height, h ( )
λ
s

×1.0  
 

Modulus, E 169 GPa  
 

The ANSYS 3D beam element beam4 was used in the FEA model in order to 

study the bending axial and torsional deflections occurring in the beam. 

The geometry and boundary conditions of the spherical model were specified as 

shown in figure 3.13: Node 1 was defined as the fixed center of the sphere; thus, it was 

constrained in all directions. 
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In order to have the opportunity to test the symmetry of the deflected beam, the 

arc was divided in four segment of equal length formed by nodes 2, 3, 4, 8, and 12. Node 

4 was placed at the middle of the beam and nodes 8 and 12 were placed at the first and 

final quarters of the structure allowing collection of strategic data from these symmetric 

points on the arc. Node 2 defined the fixed edge of the beam; therefore, it was 

constrained in all directions causing it to remain stationary throughout the deflection 

motion; in addition, nodes 4, 8 and 12 were free allowing for the study and observation of 

the beam’s structure as it was deflected. Moreover, node 3 was a guided end of the 

curved beam, where a horizontal buckling displacement load was applied and motion was 

prevented in the z-direction as were rotations about the y and x-axes. These boundary 

conditions allowed for translation and rotation of the other nodes, and for reaction forces 

and moments to be obtained at the constrained nodes. Three orthogonal axes, a rotational 

reference frame were placed on nodes 4, 8, and 12 in order to track the motion of these 

nodes and to determine the twist about the beam’s neutral axis. The reference frame at 

node 8 was defined by nodes 9, 10, and 11; the frame at node 4 was defined by nodes 5, 

6, and 7; and the frame at node 12 was defined by nodes 13, 14, and 15. 
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Figure 3.13. Shows the geometry, the loading, and the nodes of the undeflected 

curved beam. 
 

 
Figure 3.14. The deflected curved beam. 
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Once the beam was deflected the information containing the nodes’ reaction 

forces, rotations, and displacements on the x, y, and z directions was collected over a 

range of 70 load steps in an ANSYS data output file. In addition, an analysis program 

was written; which used the output for the development and application of the new 

parametric beam model for curved beams that will be introduced in section 3.5. This 

model produces a prediction of the kinematics and the elasticity of the deflected curved 

beam. 

 

3.5 Curved Beam Kinematic Analysis 

In order to accurately use the spherical PRBM to perform the kinematic and 

elastic analysis of a compliant curved beam with horizontal buckling loads, a specific 

analysis criterion was defined and reference frames were established based on the 

nomenclature developed by Saurabh Jagirdar [13]. The analysis criterion, the position, 

and the coordinate frames are related as follows: 

• It was established that the beam deflects symmetrically meaning that the half and 

quarter segments of the beam are their mirror images of each other. As a result we 

chose to analyze the segment from node 3 to node 12, which is a fourth of the 

beam and can be interpreted as a cantilever curved beam. Then, the remaining 

beam points’ characteristics could be calculated using symmetry. 

• Moments about the x and y axes are equal and opposite at node 2 and node 3. 

• The radial displacement of all nodes stays the same, meaning that the radius of 

curvature does not chance as the beam deflects. 
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• Moments about the z axis at node 12 are close to zero meaning that there is no 

twist on the beam.  

The compliant curved beam, PG, Figure 3.15 is described by using the following 

coordinate frames given in Table 3.8: 

 

 
Figure 3.15. The reference frames that describe the motion and orientation of 

positions on a compliant curved beam. 
 

The center of the sphere is defined by the O frame; the frames A, B, C, and D are 

located on the surface of the sphere. The curved beam is denoted by the points P, Q, and 

G, where P is on node 3; the free end of the beam, G is on node 2; the fixed end of the 

beam and Q is on node 12 which is the first quarter segment of the beam. The description 

of the coordinate frames is described on Table 3.6. 
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Table 3.8. Coordinate frames position and orientation. 
Frame Frame Description 

 
 

O 

This is a non-moving frame at the center of the sphere and is 
established by the x, y, and z coordinate system program in the 
ASNSYS batch code. The O2 axis passes through the fix end of the 
beam at node 2 denote by G. The O3 axis is normal to the plane 
containing the undeflected beam. The O1 axis lies on the x axis of the 
coordinate system. 

A 
This frame has identical orientation as O frame; however it is located 
at the fixed end of the beam on G, is on the O2 axis. 

 
B 

This frame is in the same plane as O and A and underneath point Q in 
order to locate its deflected position in the A2-A1 plane.  

 
C 

This frame is located on point Q and describes the movement of this 
point in the B3-B2 plane. 

 
 

D 

This frame is also located on point Q; however, it is represented by 
the skew axis placed on node 12. This frame can be used to track the 
rotation about the C2 axis 

 

Table 3.9 provides a summary of the nomenclature used in the analysis of the 

curved beam to facilitate the understanding of the geometry. 
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Table 3.9. Nomenclature. 
Variable Description 

 
 

α12 

Represents the translation of the quarter segment, node 12, in the A2-A1 
plane, this translation is analogous to, a, the translation in the x-
direction, in the planar model. Using symmetry α is defined in equation 
(3.35). See Figure 3.18 

 
αtotal 

Represents the translation of the half segment, node 4, in the A2-A1 
plane. αtotal  is defined in equation (3.36). 

 
 

β12 

Represents the translation of the quarter segment, node 12, in the B3-B2 
plane, this translation is analogous to, b, the translation in the y-
direction, in the planar model. Using symmetry β12  is defined in 
equation (3.37). See Figure 3.16 

 
βtotal 

Represents the translation of the half segment, node 4, in the B3-B2 

plane. βtotal  is defined in equation (3.38). See Figure 3.18 
 

ψ 
Represents the angles that the nodes make with the x-axis as the beam 
deflects. See Figure 3.16 and 3.17 

 
λ12 

Represents the arc angle of the quarter segment and it is defined on 
equation (3.39). 

 
λtotal 

Represents the arc angle of the entire curved beam and it is defined on 
equation (3.40). See Figure 3.14 

 
φ12 

Represent the total change of translation of the quarter segment, node 
12, in the A2-A1 plane and it is defined on equation (3.41). 

Φ 
Represent the total change of translation of the beam, in the A2-A1 plane 
and it is defined on equation (3.42). 

 
Θ 

Represents the amount of rotation that the rigid model must undergo to 
match the deflection of the compliant curved beam. 

 
0ϑ  

Represents the “deflection of the beam end about an axis normal to the 
tangent plane to the sphere at the beam end” [12]. See Figure 3.15 

s Represents the arc length of the curved beam. 
R Represents the radius of the sphere. 

 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

34
12

ψψ
α

    
(3.36) 

34 ψψα −=total     
(3.37) 
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R
s
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(3.40) 

124λλ ==
R
s

total     
(3.41) 

1212.12.1212 αλααφ −=−= fi     
(3.42) 

4
22 3

..
ψ

αα =−=Φ ftotalitotal     
(3.43) 

Figures 3.16, 3.17, and 3.18 provide a graphical explanation of the approach taken 

to define the geometry of the curved beam. 
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Figure 3.16. The position coordinates and angles of nodes 3 and 12. 

 

 
Figure 3.17. The position coordinates and angles of nodes 4 and 8. 
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Figure 3.18. The translation of the quarter segment on the planes A2-A1 and B3-B2. 

 

The reference frames are defined by the matrices A, B, C, and D, where each of 

their columns represents a basis vector. The following equations represent the 

transformations that relate the frames. 

 [A] is the identity matrix, 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

A
    

(3.44) 

[B] is defined by 

[ ] [ ][ ]ARB B=
     

(3.45) 

Where [RB] (3.44) is a rotation matrix that transforms the vectors in plane A2-A1 such that 

they align with those in frame B. 
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[C] is given by 

[ ] [ ][ ]BRC C=
     

(3.47) 

where [RC] (3.46) is the rotation matrix that rotates vectors in the B3-B2 such that they 

align with the vectors in frame C. 
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

1212

1212

cossin0
sincos0

001

ββ
ββCR

   
(3.48) 

Equation (3.49) was used in order to calculate the amount of rotation that frame C 

must undergo about the C2 to match frame D and compute the value of 0ϑ . 

[ ] [ ][ ] 1−= CDRD      
(3.49) 

Where [D] is given by the coordinates of the frame placed at node 12 and [RD] is 

specified in equation (3.50). 0ϑ  is found using the trace of [RD] in equation (3.50). 

[ ]
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(3.51) 

Thus, the behavior of the curved compliant beam can be described by the parameters φ12, 

 λ, α12, β12, and 0ϑ . Using Napier’s Rules for spherical right triangles and trigonometric 
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identities (See Figure 3.19) we can find relationships to define γ∗ (3.52) and Θ∗ (3.53) in 

terms of β12, λ12, and φ12. 

 

 
Figure 3.19. The spherical right triangle formed by a curved beam. 
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(3.53) 

Once γ∗ and Θ∗ are defined, one can apply the statistical fitting technique 

explained in section 3.2 to represent the characteristic radius factor as a function of the 

moment load. Then, using the fit and Napier’s Rules the parameters φ12, α12, Θ∗, and β12 

can be found as follows. 
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( ) ( )( )*
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(3.58) 

Finally using symmetry one can calculate the parameters of the half segment node 

4, φ4 , β4 , α4 , and its final output coordinate Z4, which represent the highest point 

reached by the mechanism for a given input.  

124 2φφ =
     

(3.59) 

124 2ββ =
     

(3.60) 

124 2αα =
     

(3.61) 

( ) ( ) ( )[ ]12121212124 2sin22sin22cos βφλπφλπ RRRZ +−+−=
  

(3.62) 

 

3.6 Kinematic Analysis Results Large Deflection Curved Beams  

This section provides a summary of the kinematic analysis of the deflection of a 

curved beam under specific horizontal buckling end-loads. The results shown in this 

section correspond to a curved beam with an arc angle, λ, of 105°. The reason why this 

angle was used is because it was the largest arc angle in the analysis; therefore, it was 

perceived as the worse can scenario yielding to the highest errors. In other words, we 

based the model on this case because if the model works for a beam with an arc angle of 
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105° it would work for any beam with a smaller arc angle producing smaller errors as the 

size of the arc angle decreased. The results of curved beams with angles 15°, 30°, 45°, 

60°, 75°, and 90° are shown on the results summary tables in the Appendix G.  

For a curved beam loaded with specific horizontal buckling loads a constant γ 

does not produce an accurate PRBM for the initial part of the beam deflection. 

Interestingly, this model behaves as Case 2 in the straight beams study; the constant γ 

PRBM approximation improves when the beam deflects significantly, so that the force is 

perpendicular to the neutral axis of the beam. In the other hand, when γ is represented as 

a function of the load, as ( )Mγγ ˆˆ ≈  with coefficient constants bi Table 3.10, the PRBM 

produces a more accurate prediction throughout the complete range of the deflection, 

meaning that regardless of the deflection magnitude or the direction in which the force is 

applied, this parametric model can provide an accurate prediction of the behavior of the 

beam Figure 3.20. 

 

Table 3.10. Values of the rational function coefficients for a curved beam with a 
horizontal buckling end-load. 

 Rational function Coefficients 
b-2 -142.1823 
b-1 78.0177 
b0 -15.7772 
b1 115.4554 
b2 -34.7151 
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Figure 3.20. γ  versus moment for a curved beam with a horizontal buckling end-load. 

 

Figure 3.21 shows the parametric approximations of the end-beam deflection path 

of the curved beam loaded with specific buckling loads. Just as with the horizontal loaded 

straight beam, the new model is capable to improve the accuracy of the PRBM in 

comparison with a constant γ model. 
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3.21. A horizontal end-load curved beam planar rotation, α versus out-of-plane 

rotation, β. 
 

Figure 3.22 shows the approximation of the deflected member PRBM angle, Θ. 

As with the straight beam case the new parametric model yields more accurate large 

deflection kinematic model predictions than a PRBM using the constant γ . 
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Figure 3.22. Moment  versus Θ for a horizontal buckling end-load curved beam. 

 

A statistical analysis was performed on the curved beam PRBM as well; a two-

sided t test with a 95% confidence interval was developed; Figure 3.23 shows the 

characteristic radius factor within the 95% confidence interval. The coefficient of 

determination 2
BR  , the rational function prediction maximum error and total error, and 

the constant γ prediction total error in the deflection approximation were also calculated 

as shown in Table 3.11. 
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Figure 3.23. The characteristic radius factor within the 95% confidence interval for a 

horizontal buckling end-load curved beam. 
 

Table 3.11. Results of statistic analysis for a horizontal buckling end-load curved beam. 
 Rational function 

Coefficients 
95% Confidence Interval 

b-2 -142.1823 ± 4.1447 
b-1 78.0177 ± 3.0046 
b0 -15.7772 ± 1.3276 
b1 115.4554 ± 3.7958 
b2 -34.7151 ± 2.1215 

Coefficient of Determination, 
2
BR  

99.44% 

Rational Function Prediction Maximum Error 1.1067e -3 % 
Rational Function Prediction Total Error 1.5795e-5% 

Constant γ Total Error 0.3843% 
 

In order to calculate the angle coefficient, ϑC , a plot of Θ versus 0ϑ  was 

performed Figure 3.24; then, a linear fit was made to the curved yielding to the constant 
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value of ϑC  needed to obtained the value of 0ϑ  in terms of the Pseudo-Rigid-Body angle, 

Θ. 

3427.1=ϑC
     

(3.63) 

 

 
Figure 3.24. The approximation to 0ϑ  using the angle coefficient, ϑC  and the 

Pseudo-Rigid-Body angle, Θ. 
 

A PRBM for a curved beam under specific horizontal buckling end-loads has not 

been published before because PRBMs using a constant γ  do not yield accurate 

predictions for this type of beams and loading configurations. This new approach appears 

to fill the gap. 
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Chapter 4 

 

Elasticity of a PRBM for Curved Beams 

This Chapter uses the principle of virtual work used in to develop elasticity 

parameters such as the torque coefficient, Tθ, and its components functions, Tf, and, Tm. 

According to Paul [25] “The net virtual work for all active forces is zero if and only if an 

ideal mechanical system is in equilibrium.” The compliant mechanism analyzed in this 

thesis is assume to be ideal, meaning that the constrains on the mechanism do not do 

work. 

0=∑ Wδ      (4.1) 

 

4.1  Principle of Virtual Work 

In order to apply the principle of virtual work to this model, first an arbitrary 

virtual linear displacement, zrδ , and an arbitrary virtual angular displacement, Φδ , must 

be defined as functions of the generalized coordinates (4.2). 

From (3.62) we expressed the virtual linear displacement as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ⎟

⎠
⎞

⎜
⎝
⎛ Φ+−+Φ⎟

⎠
⎞

⎜
⎝
⎛ Φ+−−= kjRiRz ˆ0ˆ

2
cosˆ

2
sin3 δδλπδλπδr

  (4.2) 

Then, the virtual work, FWδ , due to the applied force, F
r

, and a virtual linear 

displacement, 3zrδ , is: 
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( ) Φ•= δδδ 3zFWF
rr

    (4.3) 

In a like manner, the virtual work due to the applied moment, M
r

, and the virtual angular 

displacement, Φδ , is: 

Φ= δδ MWM

r

     (4.4) 

According to Howell [3] the PRBM can be used to model the compliant beam’s 

resistance to bending by using the stiffness coefficient, Kθ, which represents a 

nondimensionalized torsional spring. This constant combined with the material properties 

and the geometry of the beam can be employed to calculate the value of the PRBM spring 

constant, K (4.5). In order to calculated the value of the value of Tθ the principle of 

virtual work and the PRBM concepts are used to establish force-deflection relationships 

for compliant mechanisms as describe by Howell and Midha in [26]. 

λθ R
EIKK =      (4.5) 

Where 
λR

EI
 represents the non-dimensionalization factor. 

Moreover, all the store energy in the springs of the PRBM must be taken into 

consideration in order to have a complete energy balance equation. Due to the symmetry 

of the deflected beam, the PRBM behaves as if it had four identical springs acting on 

each of its quarter segments’ characteristic pivots; therefore, the total energy store on the 

springs, sU , is:  

Φ
Φ
Θ

Θ−= δ
d
dKU s

*

4     (4.6) 
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Where, K represents the spring constant and
Φ
Θ

d
d *

 represent the change of the Pseudo-

Rigid-Body Angle, Θ, as a function of the beams’ rotation in the plane A1-A3, Φ . 

Because the quarter model is the object being analyzed one can express 
Φ
Θ

d
d *

 , and sU  in 

terms of the 12φ . 

12

*

4
1

φd
d

d
d Θ

=
Φ
Θ

     (4.7) 

Therefore,  

Φ
Θ

Θ−= δ
φ12

*

d
dKUs     (4.8) 

Then, the total virtual work is  

0=++=∑ sMF UWWW δδδ    (4.9) 

or 

( ) 0
12

*
*

3 =
Θ

Θ++•=∑
φ

δδ
d
dKMzFW

rrr

  (4.10) 

Solving for K and the resultant torque, T, due to the force and the moment we obtained: 

( )
*

12
*

3

Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Θ
+•

=
d
dMzF
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rrr

    (4.11) 

( )( ) *
12

3
*

Θ
+•=Θ=

d
d

MzFKT
φ

δ
rrr

   (4.12) 

Furthermore, *
12

Θd
dφ can be found using equations (3.55) and Napier’s Rules for spherical 

right triangles as follows: 
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Consequently, by substituting equation (4.5) into equation (4.11) one can find a torque 

coefficient function, Tθ, in terms of the virtual work. 
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   (4.14) 

Additionally, θT  can be separated into its component functions, fT  (4.15) (the torque 

contributed by the force F
r

) and mT  ( 4.16) (the torque contributed by the moment M
r

 ; 

then,  the polynomial function of Θ∗ that best fits the torque is found as shown in Table 

4.1 as the fits are shown in Figure 4.1.  
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mf TTT +=θ      (4.17) 
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Figure 4.1. The torque coefficient functions θT , fT , and mT  versus Θ∗. 

 

Table 4.1. Torque function coefficients. 
Function Function constant coefficients 

θT̂  (Θ*) -0.3244 Θ*2+8.9923 Θ*-0.1640 

fT̂  (Θ*) 9.1455Θ*-1.4521 

mT̂  (Θ*) -2.4524 Θ*2+3.5246 Θ*-0.0498 

 

Once these component functions have been established, one can determine the 

force (4.18) and the moment (4.19) applied a node 12 (quarter model). After these loads 

have been found, one can determine the values of the actual moment (4.21) and the actual 

force (4.22) applied at node 3.  

( )
λR

EITF f
*

12
ˆ Θ=     (4.18) 

( )
λ2

*
12

ˆ
R
EITM m Θ=     (4.19) 
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Φ
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4.2 Model Validation 

In order to validate the stiffness model a test was performed on a beam with 

different material properties and different cross-sectional area from the original beam 

used to derived the model Table 4.2. Subsequently, the kinematic parameter Θ∗ was 

determined using the following expression 

( )
( )⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=Θ −

1212

121*

ˆsin
tan

tan
φλγ

β
     

 

 Where Φ was the input rotation of the beam and γ was the kinematic model γ̂ . After that, 

using Θ∗ the force and moments loads were calculated using the torque function 

coefficients, fT , mT .in the following manner: 

 First, the values of the torque function confidents were calculated using Θ* as an 

input  

( )
( )
( ) 0.0498- 3.5246+ -2.4524ˆ

1.4521+ 9.1455ˆ
0.1640- 8.9923+ -0.3244ˆ

2**

**

*2*

ΘΘ=Θ

Θ=Θ

ΘΘ=Θ

m

f

T

T

Tθ

  
  

Then, using the non-dimensional torque coefficient function and the dimensionalization 

factor 
λR

EI  the force and the moment loads applied at node 12 were computed  
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( )
λR

EITF f
*

12
ˆ Θ=       

( )
λ2

*
12

ˆ
R
EITM m Θ=       

Finally, using the loads applied at node 12 and the kinematic coefficient 
Φ
Θ

d
d *

 the loads 

applied at node 3 were determined. 

Φ
Θ

=
d
dMM

*

123       

Φ
Θ

=
d
dFF

*

123        

In order to determine how well the loads were predicted by the model, the 

predicted loads were compared and plotted against the values of the loads acquired from 

the FEA analysis as shown in Figures 4.2 and 4.3. Finally, after doing an error analysis it 

was established that the elastic prediction error of the force and moment loads for a beam 

with an arc angle of 105° were 14.04 % and 14.53 % respectively, when compared to the 

data provided by the FEA analysis. However, when the error analysis was applied to the 

force and moment loads predicted for a beam with an arc angle of 15° it was found that 

the error decreased; the error of the force and moment loads were 1.2218e-3% and 0.21 

% respectively, when compared with  the FEA data analysis. This suggests that the 

reason the errors on the predictions decrease for different arc angles, is because as the arc 

angles get smaller the spherical PRBM behaves more as a planar PRBM simplifying the 

model and reducing the error. 
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Table 4.2. Characteristics of the test beam. 
Arc angle, λ 15°, 30°, 45°, 60°, 75°, 90°, 105° 

Radius, R 100 μm 
Arc length, s 10 

Height, h s/15 
Width, w w×0.1 

Modulus, E 180GPa 
 λ=105° λ=15° 

Maximum force load prediction error 18.38% 1.8% 
Average force load prediction error 14.04 % 1.2218e-3% 

Maximum moment load prediction error 17.07% 1.57% 
Average moment load prediction error 14.53 % 0.21 % 

 

 
Figure 4.2. The loads predicted by the parametric model and the loads acquired 

from the FEA analysis for a beam with an arc length of 105°. 
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Figure 4.3. The loads predicted by the parametric model and the loads acquired 

from the FEA analysis for a beam with an arc length of 15°. 
 

4.3 Analysis of a Compliant Micro Helico-Kinematic Platform (MHKP) Device 

In order to analyze a compliant MHKP device with the new parametric beam 

model, the model was used to predict the motion and stiffness of a prototype with the 

properties given in Table 4.3, which was designed and manufactured using the 

PolyMUMPs process [27] and is shown in Figures 4.4. 

 

Table 4.3. MHKP material properties and cross-sectional area characteristics. 
Arc angle, λ 90° 

Radius, R 100 μm 
Arc length, s s = Rλ 

Height, h 2 μm 
Width, w 2 μm 

Modulus, E 169GPa 
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Figure 4.4. Shows the MHKP device and outlines the curved beam being tested. 

 

After performing simulation we were able to determine the specific loads needed 

to actuate the device and the output coordinates of the center of the beam, where z is the 

highest point reached by the beam once it is actuated as given in Table 4.4. 

 

Table 4.4. MHKP device simulation results. 
 

Output coordinates 
x = 24.1031 
y = 97.05217 
z = 57.0909 (Vertical displacement) 

Finitial 143.35 µN 
Ffinal 430.77 µN 

Minitial 356.17 µN µm 
Mfinal 8.90 µN µm 
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Chapter 5 

 

Conclusion 

This chapter provides a conclusion to the work developed in this thesis and gives 

a summary of the major contributions offered by this work. 

 

5.1  Conclusion and Summary of Contributions 

This thesis provides a novel, more accurate beam model for straight and curved 

compliant beams with vertical and horizontal buckling end-loads. The model uses a 

rational function to represent the characteristic radius factor as a function of the moment 

load, γ̂ =γ(M), which improves the accuracy and the range of it when compared with 

previous models. The new parametric model is used to analyze the kinematics and 

elasticity of the complete deflection range of motion of both the straight and curved 

beams developing non-dimensional kinematic and elastic parameters such as the angle 

coefficient, ϑC , the characteristic radius factor, γ̂ , the characteristic radius, γ̂ l, and the 

torque coefficients functions, Tθ, Tm, Tf. In addition, the model is used to calculate the 

working loads on the curved beam using the input angle of rotation φ.  

Furthermore, a compliant MHKP device was analyzed in order to determine 

specific buckling loads needed to actuate the device and the coordinates of the center of 
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its curved beams, so one could establish the highest point it could reach once it was 

buckled. 

Finally, software codes were developed in ANSYS and MATLAB in order to 

produce the new parametric model and provide validation of its capabilities. 
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Appendix A: ANSYS Batch Code for a Vertical End-Loaded Beam 

 

!***********************************************************************
********************** 
/CONFIG,NRES,10000 
!/CWD,'C:\Documents and Settings\despinos\Desktop\Work' 
 
!***********************************************************************
**********************  
  
 
 
!***********************************************************************
********************** 
!******Set Up Model 
Variables**************************************************************** 
 
* 
!***********************************************************************
******************** 
 
 
 
 
!*DO,asp, .1,.7,.3 
asp =.1 
aspect    = 10*asp 
!*DO,beamlenght,10,20,1 
beamlenght=25 
 
 
 
/PREP7 
!LCLEAR, ALL 
!LDELE, ALL 
!KDELE, ALL 
 
 
R=25 
PI=acos(-1.) 
h1=25 
b1=100 
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Appendix A: (continued)    
                                      
b2=10 
h2=asp*b2 
beamhigh=26.1-h2/2 
!*********** Area properties 
***************************************************************** 
 
A1 = h1*b1 
Iz1= 1/12*b1*h1*h1*h1 
Iy1= 1/12*h1*b1*b1*b1 
 
E1= 300000   
 
!***********************************************************************
**********************  
 
A2=  h2*b2 
 
Iy2= 1/12*h2*b2*b2*b2 
Iz2= 1/12*b2*h2*h2*h2   
           
E2= 169000 
 
!***********Declare an element type: Beam 4 (3D 
Elastic)************************************** 
 
ET,1,BEAM4 
KEYOPT,1,2,1 
KEYOPT,1,6,1 
  
 
!***********Set Real Constants and Material 
Properties**************************************** 
  
R,1,A1,Iy1,Iz1,h1,b1, ,           !Check on the assumptions being made 
  
R,2,A2,Iy2,Iz2,h2,b2, ,    
    
MPTEMP,1,0   
MPDATA,EX,1,,E1  
MPDATA,PRXY,1,,0.35             ! Material properties for material 1 and 2  
   
MPTEMP,1,0 
MPDATA,EX,2,,E2  
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Appendix A: (continued)    
                                      
MPDATA,PRXY,2,,0.35 
 
!***********************************************************************
********************* 
!xcoor=R*cos((90-arclength)*PI/180) 
!zcoor=R*sin((90-arclength)*PI/180) 
zcoor=0 
xcoor=beamlenght 
!**********Create Keypoints 1 throug 7: K(Point #, X-Coord, Y-Coord, Z-
Coord)**************** 
 
K,1,      0,0,0  
K,2,      beamlenght/4,0,0 
K,3,      beamlenght/2,0,0 
K,4,      3*beamlenght/4,0,0 
K,5,      beamlenght,0,0                     
k,6,      beamlenght/2, -1,h2/2 
K,7,      beamlenght/2, 0,h2/2+1 
K,8,      beamlenght/2, 1,h2/2 
 
 
!*********Create Beam using Lines and an Arc and divide into 
segments************************ 
 
LSTR,       1,2   
LSTR,       2,3    
LSTR,       3,4  
LSTR,       4,5             ! Draws lines connecting keypoints  
 
!1 through 6 
 
LSTR,       3,       6 
LSTR,       3,       7 
LSTR,       3,       8  
LESIZE,     5,,,1  
LESIZE,     6,,,1 
LESIZE,     7,,,1 
LESIZE,     1,,,30 
LESIZE,     2,,,30 
LESIZE,     3,,,30 
LESIZE,     4,,,30 
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Appendix A: (continued)                                         
 
!***********MESH******************************************************
********************** 
!rigid part, skew axis 
 
real,      1         ! Use real constant set 1 
type,      1  ! Use element type 1 
mat,       1  ! use material property set 1  
LMESH,     5,7  ! mesh lines 3-5 
 
!compliant part! 
 
real,      2  ! Use real constant set 2 
type,      1  ! Use element type 1 
mat,       2  ! use material property set 2  
LMESH,     1,4   ! mesh line 1,3 
 
 
 
!******Get Node Numbers at chosen 
keypoints************************************************** 
 
ksel,s,kp,,1 
nslk,s 
*get,nkp1,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,2 
nslk,s 
*get,nkp2,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
nsel,all 
ksel,all 
 
ksel,s,kp,,3 
nslk,s 
*get,nkp3,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,4 
nslk,s 
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Appendix A: (continued)                                         
 
*get,nkp4,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
nsel,all 
ksel,all 
 
ksel,s,kp,,5 
nslk,s 
*get,nkp5,node,0,num,max 
nsel,all 
ksel,all 
ksel,s,kp,,6 
nslk,s 
*get,nkp6,node,0,num,max 
nsel,all 
ksel,all 
 
 
 
FINISH  
 
!***********************************************************************
********************** 
!********************** SOLUTION 
*************************************************************  
!***********************************************************************
********************** 
  
/SOL 
ANTYPE,0                           ! Specifies the analysis type and restart status and "0" means 
that it Performs a static analysis. Valid for all degrees of freedom 
 
NLGEOM,1                           ! Includes large-deflection effects in a static or full transient 
analysis 
 
!CNVTOL,U,,0.000001,,0 
!CNVTOL,F,,0.0001,,0  
                                   !Sets convergence values for nonlinear analyses 
 
 
!*****************Constrains*********************************************
******* 
 
DK,1, ,0, , , ,UX,UY,UZ,ROTX,ROTY,ROTz 
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Appendix A: (continued)                                         
 
DK,5, ,0, , , ,UY,ROTX,ROTz 
!***********************************************************************
********* 
 
increments=250 
loadsteps=250 
DO,step,1,loadsteps,1  
position1=(step-1)*beamhigh/increments 
  
!DDELE,12,ALL 
 
!***********************************************************************
*********  
 
newz=h2/2+position1 
 
 
dispz=newz+zcoor  
 
 
DK,5,UZ,dispz 
 
 
LSWRITE,step 
*ENDDO  
LSSOLVE,1,loadsteps 
  
FINISH   
 
!***********************************************************************
********** 
!********GET RESULTS 
************************************************************* 
!***********************************************************************
********** 
 
!**************************Displacements nodes 
2,3,5****************************** 
/POST1 
!*DIM,rotx2,TABLE,loadSteps 
!*DIM,roty2,TABLE,loadSteps 
!*DIM,rotz2,TABLE,loadSteps 
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Appendix A: (continued)                                         
 
!*DIM,disX2,TABLE,loadSteps 
!*DIM,disY2,TABLE,loadSteps 
!*DIM,disZ2,TABLE,loadSteps 
!*DIM,disX3,TABLE,loadSteps 
!*DIM,disY3,TABLE,loadSteps 
!*DIM,disZ3,TABLE,loadSteps 
!no y displame on 5 
DIM,roty5,TABLE,loadSteps 
*DIM,disX5,TABLE,loadSteps 
*DIM,disZ5,TABLE,loadSteps 
 
!**************************Reactions forces node 
1******************************* 
 
*DIM,momx1,TABLE,loadsteps 
*DIM,momy1,TABLE,loadsteps 
*DIM,momz1,TABLE,loadsteps 
*DIM,fx1,TABLE,loadsteps 
*DIM,fy1,TABLE,loadsteps 
*DIM,fz1,TABLE,loadsteps 
 
 
!**************************Reactions forces node 
2******************************* 
 
!*DIM,momy2,TABLE,loadsteps 
!*DIM,momz2,TABLE,loadsteps 
!*DIM,fx2,TABLE,loadsteps 
!*DIM,fy2,TABLE,loadsteps 
!*DIM,fz2,TABLE,loadsteps 
 
!**************************Reactions forces node 
5******************************* 
 
*DIM,momx5,TABLE,loadsteps 
*DIM,momy5,TABLE,loadsteps 
*DIM,momz5,TABLE,loadsteps 
*DIM,fx5,TABLE,loadsteps 
*DIM,fy5,TABLE,loadsteps 
*DIM,fz5,TABLE,loadsteps 
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Appendix A: (continued)    
                                      
*Do,nn,1,loadSteps 
set,nn 
 
!**************************Displacements node 
2,3,5****************************** 
!*GET,rotx,Node,nkp2,ROT,X 
!*SET,rotx2(nn),rotx 
!*GET,roty,Node,nkp2,ROT,Y 
!*SET,roty2(nn),roty 
!*GET,rotz,Node,nkp2,ROT,Z 
!*SET,rotz2(nn),rotz 
 
!*GET,disX,Node,nkp2,U,X 
!*SET,disX2(nn),disX 
!*GET,disY,Node,nkp2,U,Y 
!*SET,disY2(nn),disY 
!*GET,disz,Node,nkp2,U,Z 
!*SET,disZ2(nn),disz 
 
!*GET,disX,Node,nkp3,U,X 
!*SET,disX3(nn),disX 
!*GET,disY,Node,nkp3,U,Y 
!*SET,disY3(nn),disY 
!*GET,disz,Node,nkp3,U,Z 
!*SET,disZ3(nn),disz 
 
 
*GET,roty,Node,nkp5,ROT,y 
*SET,roty5(nn),roty 
*GET,disX,Node,nkp5,U,X 
*SET,disX5(nn),disX 
 
 
 
*GET,disz,Node,nkp5,U,Z 
*SET,disZ5(nn),disz 
 
!**************************Reactions forces node 
1******************************* 
 
*GET,momx,Node,nkp1,RF,MX 
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Appendix A: (continued)    
                              
*SET,momx1(nn),momx 
*GET,fx,Node,nkp1,RF,FX 
*SET,fx1(nn),fx 
*GET,momy,Node,nkp1,RF,MY 
*SET,momy1(nn),momy 
*GET,fy,Node,nkp1,RF,FY 
*SET,fy1(nn),fy 
*GET,momz,Node,nkp1,RF,MZ 
*SET,momz1(nn),momz 
*GET,fz,Node,nkp1,RF,FZ 
*SET,fz1(nn),fz 
 
!**************************Reactions forces node 
2******************************* 
 
!*GET,momx,Node,nkp2,RF,MX 
!*SET,momx2(nn),momx 
!*GET,fx,Node,nkp2,RF,FX 
!*SET,fx2(nn),fx 
!*GET,momy,Node,nkp2,RF,MY 
!*SET,momy2(nn),momy 
!*GET,fy,Node,nkp2,RF,FY 
!*SET,fy2(nn),fy 
!*GET,momz,Node,nkp2,RF,MZ 
!*SET,momz2(nn),momz 
!*GET,fz,Node,nkp2,RF,FZ 
!*SET,fz2(nn),fz 
 
!**************************Reactions forces node 
5******************************* 
 
*GET,momx,Node,nkp5,RF,MX 
*SET,momx5(nn),momx 
*GET,fx,Node,nkp5,RF,FX 
*SET,fx5(nn),fx 
*GET,momy,Node,nkp5,RF,MY 
*SET,momy5(nn),momy 
*GET,fy,Node,nkp5,RF,FY 
*SET,fy5(nn),fy 
*GET,momz,Node,nkp5,RF,MZ 
*SET,momz5(nn),momz 
*GET,fz,Node,nkp5,RF,FZ 
*SET,fz5(nn),fz 
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Appendix A: (continued)    
 
*ENDDO 
 
/output,forcevertical2%_asp%aspect%,txt,,Append 
 
!***********************************************************************
*************** 
!***************FILE HEADER: BEAM 
DATA************************************************* 
!***********************************************************************
*************** 
 
*MSG,INFO,'h2','b2','R','E','beamlenght','beamhigh' 
%-8C %-8C %-8C %-8C %-8C %-8C 
 
*VWRITE,h2,b2,R,E2,beamlength,beamhigh 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G 
 
!***********************************************************************
************ 
!**************DISPLACEMENT DATA 
SET************************************************ 
!***********************************************************************
************ 
 
 
!*MSG,INFO,'rotX2','rotY2','rotZ2','disX2','disY2','disZ2' 
!%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
!*VWRITE,rotx2(1),roty2(1),rotz2(1),disX2(1),disY2(1),disZ2(1) 
!%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'roty5','disX5','disZ5' 
%-8C %-8C %-8C   
 
 
*VWRITE,roty5(1),disX5(1),disZ5(1) 
%16.8G %-16.8G %-16.8G  
 
 
!***********************************************************************
************ 
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Appendix A: (continued)    
                                      
!**************REACTIONS AT NODE 
2************************************************** 
!***********************************************************************
************ 
 
 
!*MSG,INFO,'momx2','momy2','momz2','fx2','fy2','fz2' 
!%-8C %-8C %-8C %-8C %-8C %-8C  
 
!*VWRITE,momx2(1),momy2(1),momz2(1),fx2(1),fy2(1),fz2(1) 
!%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
5************************************************** 
!***********************************************************************
************ 
 
*MSG,INFO,'momx5','momy5','momz5','fx5','fy5','fz5' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,momx5(1),momy5(1),momz5(1),fx5(1),fy5(1),fz5(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
 
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
1************************************************** 
!***********************************************************************
************ 
 
 
*MSG,INFO,'momx1','momy1','momz1','fx1','fy1','fz1' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,momx1(1),momy1(1),momz1(1),fx1(1),fy1(1),fz1(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
!***********************************************************************
************ 
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Appendix A: (continued)    
                                      
!***********************************************************************
************ 
!***********************************************************************
************ 
 
 
 
/output 
 
FINISH 
 
*ENDDO 
*ENDDO  
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Appendix B: MATLAB Code for a Vertical End-Loaded Beam 

 

clear all 
filename = ['forcevertical2%_asp%aspect%','.txt']; 
%string1 = 'C:\DOCUME~1\despinos\'; 
%fid1 = fopen([string1,filename]);                % opens the file 
string1 = 'C:\Documents and Settings\Diego\Desktop\ThesisHome'; 
fid1 = fopen(filename);         
%%%%%%%%%%%%%%%%%READS DATA FROM FILE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  
  
ABT = fread(fid1);                               % reads the file into 
variable ABT 
fclose(fid1);                                    %closes the data file 
GBT = native2unicode(ABT)';                      %changes data from 
machine code to text 
 
 
  
end1stheader   = findstr('disZ5', GBT);          % finds end of first 
header 
begin2ndheader = findstr('momx5', GBT);          % finds beginning of 
second header 
end2ndheader   = findstr('fz5'  , GBT);          % finds end of second 
header 
begin3ndheader = findstr('momx1', GBT); 
end3ndheader   = findstr('fz1'  , GBT); 
 
  
  
DATA1 = str2num(GBT(end1stheader(end)+6:begin2ndheader(end)-1)); % 
turns the data into a numerical matrix 
DATA2 = str2num(GBT(end2ndheader(end)+6:begin3ndheader(end)-1)); % 
turns the data into a numerical matrix 
DATA3 = str2num(GBT(end3ndheader(end)+6:end)); % turns the data into a 
numerical matrix 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%FORCES, DISPLACEMENTS AND 
MOMENTD%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
 
 
  
roty5 = DATA1(:,1); 
disx5 = DATA1(:,2); 
disz5 = DATA1(:,3); 
momx5 = DATA2(:,1); 
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Appendix B: (continued)    
                                      
momy5 = DATA2(:,2); 
momz5 = DATA2(:,3); 
fx5   = DATA2(:,4); 
fy5   = DATA2(:,5); 
fz5   = DATA2(:,6); 
momx1 = DATA3(:,1); 
momy1 = DATA3(:,2); 
momz1 = DATA3(:,3); 
fx1   = DATA3(:,4); 
fy1   = DATA3(:,5); 
fz1   = DATA3(:,6); 
  
%%%%%%%DEFINING l,a,b,gamma,Captheta,theta0,torque%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
l = 25; 
a= l+disx5;   
b =disz5;   
gamma = -(a.^2 - 2*a*l+l^2+b.^2)./(2*a*l-2*l^2); 
theta = atan2(b,a-(1-gamma)*l); 
theta(1) =0; 
Torque = -momy1; 
theta0 = roty5; 
  
 E = 169000; 
  h = 1; 
  b1 = 10; 
  l = 25; 
  I = (b1*h^3)/12; 
   
  
  M = (momy1*l^2)/(E*I); % Nondimensionalization 
  M_max = max(M); 
   
  %Scales moment between 0 and 1 
  M = M/M_max; 
  R = normrnd(0.1,.1,[size(M)]); 
   
  X = [ones(size(M(2:end))) 1./M(2:end) 1./M(2:end).^2 1.*M(2:end) 
1.*M(2:end).^2]; 
  Y = gamma(2:end); 
   
  B = inv(X'*X)*X'*Y; 
  
 %Gamma = 
1./(B(1)+B(2)./M+B(3)./M.^2+B(4)./M.^3+B(5)./M.^4+B(6)./M.^5); 
  Gamma = B(1)+B(2)./M+B(3)./M.^2 +B(4).*M +B(5).*M.^2; 
   
  Csgamma=polyfit(M*M_max,gamma,0); 
   
  Theta = atan2(b,a-(1-Gamma)*l); 
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Appendix B: (continued)    
                                      
  ThetaC= atan2(b,a-(1-Csgamma)*l); 
  
  epsilon = gamma(2:end)-Gamma(2:end); 
  SST = sum((gamma(2:end)-mean(gamma(2:end))).^2); 
  SSE = sum(epsilon.^2); 
  s_squared = SSE/(length(gamma(2:end))-length(B)); 
  s = sqrt(s_squared); 
  rsqrd = 1- SSE/SST; 
   
  Var_b = inv(X'*X)*s_squared; 
  X_ortho = X'*X; 
[V,D] = eig(X_ortho); 
   
  X2(:,1) = X*V(:,1); 
  X2(:,2) = X*V(:,2); 
  X2(:,3) = X*V(:,3); 
  X2(:,4) = X*V(:,4); 
  X2(:,5) = X*V(:,5); 
   
  C = inv(X2'*X2)*X2'*Y; 
  %Gamma2 = 
C(1)*X2(:,1)+C(2)*X2(:,2)+C(3)*X2(:,3)+C(4)*X2(:,4)+C(5)*X2(:,5); 
  Gamma2 = 
C(1)*X2(:,1)+C(2)*X2(:,2)+C(3)*X2(:,3)+C(4)*X2(:,4)+C(5)*X2(:,5); 
   
  Theta2 = atan2(b(2:end),a(2:end)-(1-Gamma2)*l); 
   
  
  epsilon2 = gamma(2:end)-Gamma2; 
  SSE2 = sum(epsilon2.^2); 
  s_squared2 = SSE2/(length(gamma(2:end))-length(C)); 
  s2 = sqrt(s_squared2); 
  rsqrd2 = 1- SSE2/SST; 
   
  Var_c = inv(X2'*X2)*s_squared2; 
   
  B1_prime = 
C(1)*V(1,1)+C(2)*V(1,2)+C(3)*V(1,3)+C(4)*V(1,4)+C(5)*V(1,5); % compare 
with B(1) 
  B2_prime = 
C(1)*V(2,1)+C(2)*V(2,2)+C(3)*V(2,3)+C(4)*V(2,4)+C(5)*V(2,5); % compare 
with B(2) 
  B3_prime = 
C(1)*V(3,1)+C(2)*V(3,2)+C(3)*V(3,3)+C(4)*V(3,4)+C(5)*V(3,5); % compare 
with B(3) 
  B4_prime = 
C(1)*V(4,1)+C(2)*V(4,2)+C(3)*V(4,3)+C(4)*V(4,4)+C(5)*V(4,5); % compare 
with B(4) 
  B5_prime = 
C(1)*V(5,1)+C(2)*V(5,2)+C(3)*V(5,3)+C(4)*V(5,4)+C(5)*V(5,5); % compare 
with B(5) 
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Appendix B: (continued)    
                                      
B_var(1) = 
abs(Var_c(1,1)*V(1,1)+Var_c(2,2)*V(1,2)+Var_c(3,3)*V(1,3)+Var_c(4,4)*V(
1,4)+Var_c(5,5)*V(1,5));   
  B_var(2) = 
abs(Var_c(1,1)*V(2,1)+Var_c(2,2)*V(2,2)+Var_c(3,3)*V(2,3)+Var_c(4,4)*V(
2,4)+Var_c(5,5)*V(2,5)); 
  B_var(3) = 
abs(Var_c(1,1)*V(3,1)+Var_c(2,2)*V(3,2)+Var_c(3,3)*V(3,3)+Var_c(4,4)*V(
3,4)+Var_c(5,5)*V(3,5));  
  B_var(4) = 
abs(Var_c(1,1)*V(4,1)+Var_c(2,2)*V(4,2)+Var_c(3,3)*V(4,3)+Var_c(4,4)*V(
4,4)+Var_c(5,5)*V(4,5));  
B_var(5) = 
abs(Var_c(1,1)*V(5,1)+Var_c(2,2)*V(5,2)+Var_c(3,3)*V(5,3)+Var_c(4,4)*V(
5,4)+Var_c(5,5)*V(5,5)); 
   
  B_std = sqrt(B_var); 
  % 95 % 2 sided confidence interval ie mean + or - interval 
   
   t_statistic = tinv(.975,length(Y)-length(B)); 
   CI = t_statistic*B_std; 
   Gamma_minus = B(1)-CI(1)+(B(2)-CI(2))./M+(B(3)-CI(3))./M.^2 +(B(4)-
CI(4)).*M +(B(5)-CI(5)).*M.^2; 
   Gamma_plus = B(1)+CI(1)+(B(2)+CI(2))./M+(B(3)+CI(3))./M.^2 
+(B(4)+CI(4)).*M +(B(5)+CI(5)).*M.^2; 
  
    
   %%%%%%%%%%%FIGURE 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
    
   figure(4) 
   plot([Gamma(2:end) Gamma_minus(2:end) Gamma_plus(2:end)]); 
    
     
  %%%%%%%%%%%FIGURE 1 a vs b 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(1) 
  clf 
  plot(a/l,b/l,'b*',((1-
Gamma2(2:end))+Gamma2(2:end).*cos(Theta2(2:end))),Gamma2(2:end).*sin(Th
eta2(2:end)),'R',((1-
Csgamma)+Csgamma*cos(Theta2)),Csgamma*sin(Theta2),'G-'); 
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Appendix B: (continued)    
                                      
%%%%%%%%%%%FIGURE 2 M vs theta 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(2) 
clf  
  
plot(M,theta*180/pi,'b*',M(2:end),Theta2*180/pi,'R',M(2:end),ThetaC(2:e
nd)*180/pi,'G*-'); 
 
  
%%%%%%%%%%%FIGURE 3 M vs gamma 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure (3) 
plot(gamma,M*M_max,'b*',Gamma2,M(2:end)*M_max,'R',Csgamma,M*M_max,'G-
'); 
mytexstr = '$\frac{M  l^2}{EI}$'; 
Gc= 
ylabel(mytexstr,'interpreter','latex','fontsize',10,'units','norm'); 
G4c = legend('Data','\gamma*','\gamma'); 
  
  
%%%%%%%%%%%ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
              erroro =  ( a/l - ((1-Gamma)+Gamma.*cos(Theta))).^2 + 
(b/l - Gamma.*sin(Theta)).^2; 
              %disp_mag = ((((1-Gamma)+Gamma.*cos(Theta))-
a(round(end/3))/l).^2+(Gamma.*sin(Theta)-b(round(end/3))/l).^2).^.5; 
               
             total_erroro = 
trapz(M(2:end),erroro(2:end));%+trapz(Gamma(2:end),erroro(2:end)); 
             %total_erroro = sqrt(max(erroro(2:end)./diff(M)))   
rsqrd 
Csgamma 
total_erroro 
CI 
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Appendix C: ANSYS Batch Code for a Specific Horizontal Buckling End-Loaded 

Beam 

 

!***********************************************************************
********************** 
/CONFIG,NRES,10000 
!/CWD,'C:\Documents and Settings\despinos\Desktop\Work' 
 
!***********************************************************************
**********************  
  
 
!***********************************************************************
********************** 
!******Set Up Model 
Variables**************************************************************** 
* 
 
 
!***********************************************************************
********************** 
 
 
 
!*DO,asp, .1,.7,.3 
asp =.1 
aspect    = 10*asp 
!*DO,beamlenght,10,20,1 
beamlenght=100 
/PREP7 
!LCLEAR, ALL 
!LDELE, ALL 
!KDELE, ALL 
 
 
R=100 
PI=acos(-1.) 
h1=25 
b1=100 
 
 
b2=10 
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Appendix C: (continued)    
                                      
h2=asp*b2 
!*********** Area properties 
***************************************************************** 
A1 = h1*b1 
                                         
Iz1= 1/12*b1*h1*h1*h1 
Iy1= 1/12*h1*b1*b1*b1 
 
E1= 300000   
 
!***********************************************************************
**********************  
 
A2=  h2*b2 
 
Iy2= 1/12*h2*b2*b2*b2 
Iz2= 1/12*b2*h2*h2*h2   
           
E2= 169000 
 
!***********Declare an element type: Beam 4 (3D 
Elastic)************************************** 
 
ET,1,BEAM4 
KEYOPT,1,2,1 
KEYOPT,1,6,1 
  
 
 
!***********Set Real Constants and Material 
Properties**************************************** 
  
R,1,A1,Iy1,Iz1,h1,b1, ,           !Check on the assumptions being made 
  
R,2,A2,Iy2,Iz2,h2,b2, ,    
    
MPTEMP,1,0   
MPDATA,EX,1,,E1  
MPDATA,PRXY,1,,0.35             ! Material properties for material 1 and 2  
   
MPTEMP,1,0 
MPDATA,EX,2,,E2  
MPDATA,PRXY,2,,0.35 
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Appendix C: (continued)    
                                      
************************************************************************
******************** 
 
xcoor=beamlenght 
 
!**********Create Keypoints 1 throug 7: K(Point #, X-Coord, Y-Coord, Z-
Coord)**************** 
 
K,1,      0,0,0  
K,2,      beamlenght/4,0,h2/4 
K,3,      beamlenght/2,0,h2/2 
K,4,      3*beamlenght/4,0,h2/4 
K,5,      beamlenght,0,0                     
k,6,      beamlenght/2, -1,h2/2 
K,7,      beamlenght/2, 0,h2/2+1 
K,8,      beamlenght/2, 1,h2/2 
 
 
!*********Create Beam using Lines and an Arc and divide into 
segments************************ 
 
LSTR,       1,2   
LSTR,       2,3    
LSTR,       3,4  
LSTR,       4,5             ! Draws lines connecting keypoints  
 
1 through 6 
 
LSTR,       3,       6 
LSTR,       3,       7 
LSTR,       3,       8  
LESIZE,     5,,,1  
LESIZE,     6,,,1 
LESIZE,     7,,,1 
LESIZE,     1,,,30 
LESIZE,     2,,,30 
LESIZE,     3,,,30 
LESIZE,     4,,,30 
 
 
!***********MESH******************************************************
********************** 
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Appendix C: (continued)    
                                      
!rigid part, skew axis 
 
real,      1         ! Use real constant set 1 
type,      1  ! Use element type 1 
mat,       1         ! use material property set 1  
LMESH,     5,7  ! mesh lines 3-5 
 
 
!compliant part! 
 
real,      2  ! Use real constant set 2 
type,      1  ! Use element type 1 
mat,       2         ! use material property set 2  
LMESH,     1,4   ! mesh line 1,3 
 
 
 
!******Get Node Numbers at chosen 
keypoints************************************************** 
 
ksel,s,kp,,1 
nslk,s 
*get,nkp1,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,2 
nslk,s 
*get,nkp2,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
nsel,all 
ksel,all 
 
ksel,s,kp,,3 
nslk,s 
*get,nkp3,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,4 
nslk,s 
*get,nkp4,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
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Appendix C: (continued)    
                                      
nsel,all 
ksel,all 
 
ksel,s,kp,,5 
nslk,s 
*get,nkp5,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,6 
nslk,s 
*get,nkp6,node,0,num,max 
nsel,all 
ksel,all 
 
 
 
FINISH  
 
!***********************************************************************
********************** 
!********************** SOLUTION 
*************************************************************  
!***********************************************************************
********************** 
  
/SOL 
ANTYPE,0                           ! Specifies the analysis type and restart status and "0" means 
that it Performs a static analysis. Valid for all degrees of freedom 
 
NLGEOM,1                           ! Includes large-deflection effects in a static or full transient 
analysis 
 
!CNVTOL,U,,0.000001,,0 
!CNVTOL,F,,0.0001,,0  
                                   !Sets convergence values for nonlinear analyses 
 
 
!*****************Constrains*********************************************
******* 
 
DK,1, ,0, , , ,UX,UY,UZ,ROTX,ROTY,ROTz 
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Appendix C: (continued)    
                                      
DK,5, ,0, , , ,UZ,UY,ROTY,ROTX,ROTz 
   
!***********************************************************************
********* 
increments=3000 
loadsteps=300 
*DO,step,1,loadsteps,1  
position=(step-1)*beamlenght/increments 
  
!DDELE,12,ALL 
 
!***********************************************************************
*********  
 
newx=beamlenght-position 
dispx=newx-xcoor  
DK,5,UX,dispx 
 
 
LSWRITE,step 
*ENDDO  
 
increments=400 
loadsteps=284 
*DO,step,41,loadsteps,1  
position=(step-1)*beamlenght/increments 
  
!DDELE,12,ALL 
 
!***********************************************************************
*********  
 
newx=beamlenght-position 
dispx=newx-xcoor  
DK,5,UX,dispx 
 
 
LSWRITE,step+260 
*ENDDO  
 
LSSOLVE,1,loadsteps+260 
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Appendix C: (continued)    
                                      
/STATUS,SOLU  
FINISH   
 
loadsteps= loadsteps+260 
!***********************************************************************
********** 
!********GET RESULTS 
************************************************************* 
!***********************************************************************
********** 
 
!**************************Displacements nodes 
2,3,5****************************** 
/POST1 
*DIM,rotx2,TABLE,loadSteps 
*DIM,roty2,TABLE,loadSteps 
*DIM,rotz2,TABLE,loadSteps 
*DIM,disX2,TABLE,loadSteps 
*DIM,disY2,TABLE,loadSteps 
*DIM,disZ2,TABLE,loadSteps 
*DIM,disX3,TABLE,loadSteps 
*DIM,disY3,TABLE,loadSteps 
*DIM,disZ3,TABLE,loadSteps 
*DIM,disX5,TABLE,loadSteps 
*DIM,disY5,TABLE,loadSteps 
*DIM,disZ5,TABLE,loadSteps 
 
!**************************Reactions forces node 
1******************************* 
 
*DIM,momx1,TABLE,loadsteps 
*DIM,momy1,TABLE,loadsteps 
*DIM,momz1,TABLE,loadsteps 
*DIM,fx1,TABLE,loadsteps 
*DIM,fy1,TABLE,loadsteps 
*DIM,fz1,TABLE,loadsteps 
 
 
!**************************Reactions forces node 
2******************************* 
 
*DIM,momx2,TABLE,loadsteps 
*DIM,momy2,TABLE,loadsteps 
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Appendix C: (continued)    
                                      
*DIM,momz2,TABLE,loadsteps 
*DIM,fx2,TABLE,loadsteps 
*DIM,fy2,TABLE,loadsteps 
*DIM,fz2,TABLE,loadsteps 
 
!**************************Reactions forces node 
5******************************* 
*DIM,momx5,TABLE,loadsteps 
*DIM,momy5,TABLE,loadsteps 
*DIM,momz5,TABLE,loadsteps 
*DIM,fx5,TABLE,loadsteps 
*DIM,fy5,TABLE,loadsteps 
*DIM,fz5,TABLE,loadsteps 
 
*Do,nn,1,loadSteps 
set,nn 
 
!**************************Displacements node 
2,3,5****************************** 
 
*GET,rotx,Node,nkp2,ROT,X 
*SET,rotx2(nn),rotx 
*GET,roty,Node,nkp2,ROT,Y 
*SET,roty2(nn),roty 
*GET,rotz,Node,nkp2,ROT,Z 
*SET,rotz2(nn),rotz 
 
*GET,disX,Node,nkp2,U,X 
*SET,disX2(nn),disX 
*GET,disY,Node,nkp2,U,Y 
*SET,disY2(nn),disY 
*GET,disz,Node,nkp2,U,Z 
*SET,disZ2(nn),disz 
 
*GET,disX,Node,nkp3,U,X 
*SET,disX3(nn),disX 
*GET,disY,Node,nkp3,U,Y 
*SET,disY3(nn),disY 
*GET,disz,Node,nkp3,U,Z 
*SET,disZ3(nn),disz 
 
*GET,disX,Node,nkp5,U,X 
*SET,disX5(nn),disX 
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*GET,disY,Node,nkp5,U,Y 
*SET,disY5(nn),disY 
*GET,disz,Node,nkp5,U,Z 
*SET,disZ5(nn),disz 
!**************************Reactions forces node 
1******************************* 
 
*GET,momx,Node,nkp1,RF,MX 
*SET,momx1(nn),momx 
*GET,fx,Node,nkp1,RF,FX 
*SET,fx1(nn),fx 
*GET,momy,Node,nkp1,RF,MY 
*SET,momy1(nn),momy 
*GET,fy,Node,nkp1,RF,FY 
*SET,fy1(nn),fy 
*GET,momz,Node,nkp1,RF,MZ 
*SET,momz1(nn),momz 
*GET,fz,Node,nkp1,RF,FZ 
*SET,fz1(nn),fz 
 
!**************************Reactions forces node 
2******************************* 
 
*GET,momx,Node,nkp2,RF,MX 
*SET,momx2(nn),momx 
*GET,fx,Node,nkp2,RF,FX 
*SET,fx2(nn),fx 
*GET,momy,Node,nkp2,RF,MY 
*SET,momy2(nn),momy 
*GET,fy,Node,nkp2,RF,FY 
*SET,fy2(nn),fy 
*GET,momz,Node,nkp2,RF,MZ 
*SET,momz2(nn),momz 
*GET,fz,Node,nkp2,RF,FZ 
*SET,fz2(nn),fz 
 
!**************************Reactions forces node 
5******************************* 
 
*GET,momx,Node,nkp5,RF,MX 
*SET,momx5(nn),momx 
*GET,fx,Node,nkp5,RF,FX 
*SET,fx5(nn),fx 
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*GET,momy,Node,nkp5,RF,MY 
*SET,momy5(nn),momy 
*GET,fy,Node,nkp5,RF,FY 
*SET,fy5(nn),fy 
*GET,momz,Node,nkp5,RF,MZ 
*SET,momz5(nn),momz 
*GET,fz,Node,nkp5,RF,FZ 
*SET,fz5(nn),fz 
 
*ENDDO 
 
/output,forceplana2%_asp%aspect%,txt,,Append 
 
!***********************************************************************
*************** 
!***************FILE HEADER: BEAM 
DATA************************************************* 
!***********************************************************************
*************** 
 
*MSG,INFO,'h2','b2','R','E','beamlenght' 
%-8C %-8C %-8C %-8C %-8C 
 
*VWRITE,h2,b2,R,E2,beamlength 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G 
 
!***********************************************************************
************ 
!**************DISPLACEMENT DATA 
SET************************************************ 
!***********************************************************************
************ 
 
 
*MSG,INFO,'rotX2','rotY2','rotZ2','disX2','disY2','disZ2' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx2(1),roty2(1),rotz2(1),disX2(1),disY2(1),disZ2(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'disX3','disY3','disZ3','disX5','disY5','disZ5' 
%-8C %-8C %-8C %-8C %-8C %-8C  
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*VWRITE,disX3(1),disY3(1),disZ3(1),disX5(1),disY5(1),disZ5(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
2************************************************** 
!***********************************************************************
************ 
 
 
*MSG,INFO,'momx2','momy2','momz2','fx2','fy2','fz2' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,momx2(1),momy2(1),momz2(1),fx2(1),fy2(1),fz2(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
 
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
5************************************************** 
!***********************************************************************
************ 
 
*MSG,INFO,'momx5','momy5','momz5','fx5','fy5','fz5' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,momx5(1),momy5(1),momz5(1),fx5(1),fy5(1),fz5(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
 
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
1************************************************** 
!***********************************************************************
************ 
 
 
*MSG,INFO,'momx1','momy1','momz1','fx1','fy1','fz1' 
%-8C %-8C %-8C %-8C %-8C %-8C  
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*VWRITE,momx1(1),momy1(1),momz1(1),fx1(1),fy1(1),fz1(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
!***********************************************************************
************ 
/output 
 
FINISH 
 
*ENDDO 
*ENDDO 
 
  



www.manaraa.com

 

105 

Appendix D: MATLAB Code for a Specific Horizontal Buckling End-Loaded Beam 

 

clear all 
 %filename = 
['180+forceplanar_arc%arclength%_asp',num2str(aspect),'.txt']; 
%filename = '180_FO~1.txt'; 
filename = ['forceplana2%_asp%aspect%','.txt']; 
%string1 = 'C:\DOCUME~1\despinos\'; 
%fid1 = fopen([string1,filename]);                % opens the file 
string1 = 'C:\Documents and Settings\Diego\Desktop\ThesisHome'; 
fid1 = fopen(filename); 
%%%%%%%%%%%%%%%%%READS DATA FROM FILE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 
  
 
ABT = fread(fid1);                               % reads the file into 
variable ABT 
fclose(fid1);                                    %closes the data file 
 
BT = native2unicode(ABT)';                      %changes data from 
machine code to text 
  
 
end1stheader   = findstr('disZ2', GBT);          % finds end of first 
header 
begin2ndheader = findstr('disX3', GBT);          % finds beginning of 
second header 
end2ndheader   = findstr('disZ5', GBT);          % finds end of second 
header 
begin3ndheader = findstr('momx2', GBT); 
end3ndheader   = findstr('fz2'  , GBT); 
begin4ndheader = findstr('momx5', GBT); 
end4ndheader   = findstr('fz5'  , GBT); 
begin5ndheader = findstr('momx1', GBT); 
end5ndheader   = findstr('fz1'  , GBT); 
  
 
DATA1 = str2num(GBT(end1stheader(end)+6:begin2ndheader(end)-1)); % 
turns the data into a numerical matrix 
DATA2 = str2num(GBT(end2ndheader(end)+6:begin3ndheader(end)-1)); % 
turns the data into a numerical matrix 
DATA3 = str2num(GBT(end3ndheader(end)+4:begin4ndheader(end)-1)); % 
turns the data into a numerical matrix 
DATA4 = str2num(GBT(end4ndheader(end)+4:begin5ndheader(end)-1)); % 
turns the data into a numerical matrix 
DATA5 = str2num(GBT(end5ndheader(end)+4:end));                   % 
turns the data into a numerical matrix 
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Appendix D: (continued)    
 
%%%%%%%%%%%%%%%%%%%%%%%%%%FORCES, DISPLACEMENTS AND 
MOMENTD%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
roty2 = DATA1(:,2); 
disx2 = DATA1(:,4); 
disz2 = DATA1(:,6); 
disx3 = DATA2(:,1); 
disz3 = DATA2(:,3); 
disx5 = DATA2(:,4); 
momx2 = DATA3(:,1); 
momy2 = DATA3(:,2); 
momz2 = DATA3(:,3); 
fx2   = DATA3(:,4); 
fy2   = DATA3(:,5); 
fz2   = DATA3(:,6); 
momx5 = DATA4(:,1); 
momy5 = DATA4(:,2); 
momz5 = DATA4(:,3); 
fx5   = DATA4(:,4); 
fy5   = DATA4(:,5); 
fz5   = DATA4(:,6); 
momx1 = DATA5(:,1); 
momy1 = DATA5(:,2); 
momz1 = DATA5(:,3); 
fx1   = DATA5(:,4); 
fy1   = DATA5(:,5); 
fz1   = DATA5(:,6); 
  
%%%%%%%DEFINING l,a,b,gamma,Captheta,theta0,torque%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
l = 25; 
a= l+disx2;   
b =disz2;   
gamma = -(a.^2 - 2*a*l+l^2+b.^2)./(2*a*l-2*l^2); 
theta = atan2(b,a-(1-gamma)*l); 
theta(1) =0; 
Torque = -momy1; 
theta0 = roty2; 
  
 E = 169000; 
  h = 1; 
  b1 = 10; 
  l = 25; 
  I = (b1*h^3)/12; 
   
  
  M = (momy1*l^2)/(E*I);  
  M_max = max(M); 
  M = M/M_max;  
  R = normrnd(0.1,.1,[size(M)]); 
    



www.manaraa.com

 

107 

Appendix D: (continued)   
  
  X = [ones(size(M(2:end))) 1./M(2:end) 1./M(2:end).^2 1.*M(2:end) 
1.*M(2:end).^2]; 
  Y = gamma(2:end); 
B = inv(X'*X)*X'*Y; 
  
 %Gamma = 
1./(B(1)+B(2)./M+B(3)./M.^2+B(4)./M.^3+B(5)./M.^4+B(6)./M.^5); 
  Gamma = B(1)+B(2)./M+B(3)./M.^2 +B(4).*M +B(5).*M.^2; 
   
  Csgamma=polyfit(M(2:end)*M_max,gamma(2:end),0);%%%%%%%%% 
   
  Theta = atan2(b,a-(1-Gamma)*l); 
  ThetaC= atan2(b,a-(1-Csgamma)*l); 
   
   
figure (5) 
clf  
plot(M*M_max,gamma) 
  
  
  epsilon = gamma(2:end)-Gamma(2:end); 
  SST = sum((gamma(2:end)-mean(gamma(2:end))).^2); 
  SSE = sum(epsilon.^2); 
  s_squared = SSE/(length(gamma(2:end))-length(B)); 
  s = sqrt(s_squared); 
  rsqrd = 1- SSE/SST; 
   
  Var_b = inv(X'*X)*s_squared; 
  X_ortho = X'*X; 
  [V,D] = eig(X_ortho); 
   
  X2(:,1) = X*V(:,1); 
  X2(:,2) = X*V(:,2); 
  X2(:,3) = X*V(:,3); 
  X2(:,4) = X*V(:,4); 
  X2(:,5) = X*V(:,5); 
   
  C = inv(X2'*X2)*X2'*Y; 
  %Gamma2 = 
C(1)*X2(:,1)+C(2)*X2(:,2)+C(3)*X2(:,3)+C(4)*X2(:,4)+C(5)*X2(:,5); 
  Gamma2 = 
C(1)*X2(:,1)+C(2)*X2(:,2)+C(3)*X2(:,3)+C(4)*X2(:,4)+C(5)*X2(:,5); 
  Theta2 = atan2(b(2:end),a(2:end)-(1-Gamma2)*l); 
   
  
  epsilon2 = gamma(2:end)-Gamma2; 
  SSE2 = sum(epsilon2.^2); 
  s_squared2 = SSE2/(length(gamma(2:end))-length(C)); 
  s2 = sqrt(s_squared2); 
 



www.manaraa.com

 

108 

Appendix D: (continued)   
  
  rsqrd2 = 1- SSE2/SST; 
       
  Var_c = inv(X2'*X2)*s_squared2; 
  sc(1) = sqrt(Var_c(1,1)); 
  sc(2) = sqrt(Var_c(2,2)); 
  sc(3) = sqrt(Var_c(3,3)); 
  sc(4) = sqrt(Var_c(4,4)); 
  sc(5) = sqrt(Var_c(5,5)); 
   
  B1_prime = 
C(1)*V(1,1)+C(2)*V(1,2)+C(3)*V(1,3)+C(4)*V(1,4)+C(5)*V(1,5); % compare 
with B(1) 
  B2_prime = 
C(1)*V(2,1)+C(2)*V(2,2)+C(3)*V(2,3)+C(4)*V(2,4)+C(5)*V(2,5); % compare 
with B(2) 
  B3_prime = 
C(1)*V(3,1)+C(2)*V(3,2)+C(3)*V(3,3)+C(4)*V(3,4)+C(5)*V(3,5); % compare 
with B(3) 
  B4_prime = 
C(1)*V(4,1)+C(2)*V(4,2)+C(3)*V(4,3)+C(4)*V(4,4)+C(5)*V(4,5); % compare 
with B(4) 
  B5_prime = 
C(1)*V(5,1)+C(2)*V(5,2)+C(3)*V(5,3)+C(4)*V(5,4)+C(5)*V(5,5); % compare 
with B(5) 
   
   
   
  B_var(1) = sum(sc.*V(1,:)).^2; 
  B_var(2) = sum(sc.*V(2,:)).^2; 
  B_var(3) = sum(sc.*V(3,:)).^2; 
  B_var(4) = sum(sc.*V(4,:)).^2; 
  B_var(5) = sum(sc.*V(5,:)).^2; 
   
   
  B_std = sqrt(B_var); 
  % 95 % 2 sided confidence interval ie mean + or - interval 
   
   t_statistic = tinv(.975,length(Y)-length(B)); 
   CI = t_statistic*B_std 
   Gamma_minus = B(1)-CI(1)+(B(2)-CI(2))./M+(B(3)-CI(3))./M.^2 +(B(4)-
CI(4)).*M +(B(5)-CI(5)).*M.^2; 
   Gamma_plus = B(1)+CI(1)+(B(2)+CI(2))./M+(B(3)+CI(3))./M.^2 
+(B(4)+CI(4)).*M +(B(5)+CI(5)).*M.^2; 
  
 %%%%%%%%%%%FIGURE 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   figure(4) 
   plot([Gamma(2:end) Gamma_minus(2:end) Gamma_plus(2:end)]); 
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 %%%%%%%%%%%FIGURE 1 a vs b 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 figure(1) 
  clf 
  plot(a/l,b/l,'b*',((1-
Gamma2(2:end))+Gamma2(2:end).*cos(Theta2(2:end))),Gamma2(2:end).*sin(Th
eta2(2:end)),'R',((1-
Csgamma)+Csgamma*cos(Theta2)),Csgamma*sin(Theta2),'G-'); 
  
%%%%%%%%%%%FIGURE 2 M vs theta 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(2) 
clf  
plot(M,theta*180/pi,'b*',M(2:end),Theta2*180/pi,'R',M(2:end),ThetaC(2:e
nd)*180/pi,'G-'); 
  
  
%%%%%%%%%%%FIGURE 3 M vs gamma 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure (3) 
plot(gamma,M*M_max,'b*',Gamma2,M(2:end)*M_max,'R',Csgamma,M*M_max,'Gs-
'); 
mytexstr = '$\frac{M  l^2}{EI}$'; 
Gc= 
ylabel(mytexstr,'interpreter','latex','fontsize',10,'units','norm'); 
G4c = legend('Data','\gamma*','\gamma'); 
  
  
%%%%%%%%%%%ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
erroro =  ( a(2:end)/l - ((1-Gamma2)+Gamma2.*cos(Theta2))).^2 + 
(b(2:end)/l - Gamma2.*sin(Theta2)).^2; 
%disp_mag = ((((1-Gamma2)+Gamma2.*cos(Theta2))-
a(round(end/3))/l).^2+(Gamma2.*sin(Theta2)-b(round(end/3))/l).^2).^.5; 
               
total_erroro = trapz(M(2:end),erroro); 
%+trapz(Gamma2(2:end),erroro(2:end)); 
%total_erroro = sqrt(max(erroro(2:end)./diff(M)))   
  
  
rsqrd2 
Csgamma 
total_erroro           
  



www.manaraa.com

 

110 

Appendix E: ANSYS Batch Code for a Specific Horizontal Buckling End-Loaded 

Curved Beam 

 

!***********************************************************************
********************** 
/CONFIG,NRES,10000 
!/CWD,'C:\Documents and Settings\despinos\Desktop\Work' 
!/INPUT,'C:\Documents and 
Settings\despinos\Desktop\ThesisDiego\AnsysCode\curvebeam3diffarcs','txt' 
!***********************************************************************
**********************  
 
 
 
!***********************************************************************
********************** 
!******Set Up Model 
Variables****************************************************************
* 
!***********************************************************************
********************** 
!*DO,asp, .1,.7,.3 
asp =.1 
aspect    = 10*asp 
!*DO,beamlenght,10,20,1 
*DO,LAMBDAdg,15,105,15 
R=100 
Lambda=LAMBDAdg*PI/180 
arclength=R*Lambda 
/PREP7 
LCLEAR, ALL 
LDELE, ALL 
 
KDELE, ALL 
 
PI=acos(-1.) 
 
 
h1=.1 
b1=1 
b2=5.7 
h2=2 
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!*********** Area properties 
***************************************************************** 
 
A1 = h1*b1 
                                         
Iz1= 1/12*b1*h1*h1*h1 
Iy1= 1/12*h1*b1*b1*b1 
 
E1= 300000   
 
!***********************************************************************
**********************  
 
A2=  h2*b2 
 
Iy2= 1/12*h2*b2*b2*b2 
Iz2= 1/12*b2*h2*h2*h2   
           
E2= 169000 
 
!***********Declare an element type: Beam 4 (3D 
Elastic)************************************** 
 
ET,1,BEAM4 
KEYOPT,1,2,1 
KEYOPT,1,6,1 
  
 
!***********Set Real Constants and Material 
Properties**************************************** 
  
R,1,A1,Iy1,Iz1,h1,b1, ,           !Check on the assumptions being made 
  
R,2,A2,Iy2,Iz2,h2,b2, ,    
    
MPTEMP,1,0   
MPDATA,EX,1,,E1  
MPDATA,PRXY,1,,0.35             ! Material properties for material 1 and 2  
   
MPTEMP,1,0 
MPDATA,EX,2,,E2  
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MPDATA,PRXY,2,,0.35 
 
!***********************************************************************
********************* 
 
 
 
 
xcoor=R*cos((90*PI/180)-(arclength/R)) 
ycoor=R*sin((90*PI/180)-(arclength/R)) 
midx = R*cos((90*PI/180)-(arclength/(2*R))) 
midy = R*sin((90*PI/180)-(arclength/(2*R))) 
fourthx =R*cos((90*PI/180)-(arclength/(4*R))) 
fourthy =R*sin((90*PI/180)-(arclength/(4*R))) 
fourthx2 =R*cos((90*PI/180)-((arclength*3)/(4*R))) 
fourthy2 =R*sin((90*PI/180)-((arclength*3)/(4*R))) 
 
 
!**********Create Keypoints 1 throug 11: K(Point #, X-Coord, Y-Coord, Z-
Coord)**************** 
 
K,1,  0,0,0,  
K,2,  0,R,0 
K,3,  xcoor,ycoor,0                     
k,4,  midx, midy,h2 
K,5,  midx,midy,(h2)+1 
K,6,  midx*(R-1)/R,midy*(R-1)/R,h2 
       !!!????? 
!K,7,  midx-midy/R,midy+midx/R,h2 
!K,7,  midx*(R+1)/R,midy*(R+1)/R,h2  
K,7,   midx+cos(arclength/(2*R)),midy-sin(arclength/(2*R)),h2 
 
 
 
k,8,  fourthx,fourthy,h2/2 
k,9,  fourthx,fourthy,(h2/2)+1 
k,10, fourthx*(R-1)/R,fourthy*(R-1)/R,h2/2 
  !!!????? 
!k,11, fourthx-fourthy/R,fourthy+fourthx/R,h2/2 
!k,11, fourthx*(R+1)/R,fourthy*(R+1)/R,h2/2 
k,11,   fourthx+cos(arclength/(4*R)),fourthy-sin(arclength/(4*R)),h2/2 
 
k,12, fourthx2,fourthy2,h2/2 



www.manaraa.com

 

113 

Appendix E: (continued) 
  
k,13, fourthx2,fourthy2,(h2/2)+1 
k,14, fourthx2*(R-1)/R,fourthy2*(R-1)/R,h2/2 
       !!!????? 
!k,15, fourthx2-fourthy2/R,fourthy2+fourthx2/R,h2/2 
!k,15, fourthx2*(R+1)/R,fourthy2*(R+1)/R,h2/2 
k,15,  fourthx2+cos((arclength*3)/(4*R)),fourthy2-sin((arclength*3)/(4*R)),h2/2 
 
 
!*********Create Beam using Lines and an Arc and divide into 
segments************************ 
 
LSTR,       4,5    !line 1 
LSTR,       4,6    !line 2                ! Draws lines connecting keypoints 
LSTR,       4,7    !line 3 
LSTR,       8,9    !line 4 
LSTR,       8,10   !line 5                
LSTR,       8,11   !line 6 
LSTR,       12,13  !line 7 
LSTR,       12,14  !line 8 
LSTR,       12,15  !line 9     
LESIZE,     ALL,,,1  
 
LARC,       2,8,1,R,  !arc 10 
LARC,       8,4,1,R,  !arc 11 
LARC,       4,12,1,R, !arc 12 
LARC,       12,3,1,R, !arc 13 
 
LESIZE,     10,,,30 
LESIZE,     11,,,30 
LESIZE,     12,,,30 
LESIZE,     13,,,30 
 
 
 
!***********MESH******************************************************
********************** 
!rigid part skew axis!! 
 
real,       1   ! Use real constant set 1 
type,       1   ! Use element type 1 
mat,        1   ! use material property set 1  
LMESH,      1,9          ! mesh lines 1-9 
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!copliant arc! 
 
real,       2   ! Use real constant set 2 
type,       1   ! Use element type 1 
mat,        2   ! use material property set 2  
LMESH,      10,13          ! mesh line 10,13 
 
 
!******Get Node Numbers at chosen 
keypoints************************************************** 
ksel,s,kp,,2 
nslk,s 
*get,nkp2,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
nsel,all 
ksel,all 
 
ksel,s,kp,,3 
nslk,s 
*get,nkp3,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,4 
nslk,s 
*get,nkp4,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
nsel,all 
ksel,all 
 
ksel,s,kp,,5 
nslk,s 
*get,nkp5,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,6 
nslk,s 
*get,nkp6,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,7 



www.manaraa.com

 

115 

Appendix E: (continued) 
  
nslk,s 
*get,nkp7,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,8 
nslk,s 
*get,nkp8,node,0,num,max            !Retrieves a value and stores it as a scalar parameter or 
part of an array parameter 
nsel,all 
ksel,all 
 
ksel,s,kp,,9 
nslk,s 
*get,nkp9,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,10 
nslk,s 
*get,nkp10,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,11 
nslk,s 
*get,nkp11,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,12 
nslk,s 
*get,nkp12,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,13 
nslk,s 
*get,nkp13,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,14 
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nslk,s 
*get,nkp14,node,0,num,max 
nsel,all 
ksel,all 
 
ksel,s,kp,,15 
nslk,s 
*get,nkp15,node,0,num,max 
nsel,all 
ksel,all 
 
 
 
FINISH  
 
!***********************************************************************
********************** 
!********************** SOLUTION 
*************************************************************  
!***********************************************************************
********************** 
  
/SOL 
ANTYPE,0                           ! Specifies the analysis type and restart status and "0" means 
that it Performs a static analysis. Valid for all degrees of freedom 
 
NLGEOM,1                           ! Includes large-deflection effects in a static or full transient 
analysis 
 
!CNVTOL,U,,0.000001,,0 
!CNVTOL,F,,0.0001,,0  
                                   !Sets convergence values for nonlinear analyses 
 
SOLCONTROL,ON 
NEQIT,100 
AUTOTS,ON 
!***************** Defines DOF constraints at 
keypoints**************************************************** 
 
DK,2, ,0, , , ,UX,UY,UZ,ROTX,ROTY,ROTz 
 
DK,3, ,0, , , ,UZ,ROTY,ROTX 
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!***********************************************************************
********* 
 
increments=100 
loadsteps=70 
*DO,step,1,loadsteps,1  
theta=(step-1)*arclength/(R*increments) 
  
!DDELE,12,ALL 
 
!***********************************************************************
*********  
 
newx=R*cos((PI/2-(arclength/R-theta))) 
newy=R*sin((PI/2-(arclength/R-theta))) 
                                    
dispx=newx-xcoor  
dispy=newy-ycoor  
                                    
DK,3,UX,dispx 
DK,3,UY,dispy 
DK,3,ROTZ,theta 
LSWRITE,step 
*ENDDO  
LSSOLVE,1,loadsteps 
    
/STATUS,SOLU  
FINISH   
 
!***********************************************************************
********** 
!********GET RESULTS 
************************************************************* 
!***********************************************************************
********** 
 
!**************************Displacements nodes 
8,(9,10,11),4,(5,6,7,)3,2,12,(13,14,15)************************** 
/POST1 
*DIM,rotx8,TABLE,loadSteps 
*DIM,roty8,TABLE,loadSteps 
*DIM,rotz8,TABLE,loadSteps 
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*DIM,disX8,TABLE,loadSteps 
*DIM,disY8,TABLE,loadSteps 
*DIM,disZ8,TABLE,loadSteps 
*DIM,rotx9,TABLE,loadSteps 
*DIM,roty9,TABLE,loadSteps 
*DIM,rotz9,TABLE,loadSteps 
*DIM,disX9,TABLE,loadSteps 
*DIM,disY9,TABLE,loadSteps 
*DIM,disZ9,TABLE,loadSteps 
*DIM,rotx10,TABLE,loadSteps 
*DIM,roty10,TABLE,loadSteps 
*DIM,rotz10,TABLE,loadSteps 
*DIM,disX10,TABLE,loadSteps 
*DIM,disY10,TABLE,loadSteps 
*DIM,disZ10,TABLE,loadSteps 
*DIM,rotx11,TABLE,loadSteps 
*DIM,roty11,TABLE,loadSteps 
*DIM,rotz11,TABLE,loadSteps 
*DIM,disX11,TABLE,loadSteps 
*DIM,disY11,TABLE,loadSteps 
*DIM,disZ11,TABLE,loadSteps 
*DIM,rotx4,TABLE,loadSteps 
*DIM,roty4,TABLE,loadSteps 
*DIM,rotz4,TABLE,loadSteps 
*DIM,disX4,TABLE,loadSteps 
*DIM,disY4,TABLE,loadSteps 
*DIM,disZ4,TABLE,loadSteps 
*DIM,rotx5,TABLE,loadSteps 
*DIM,roty5,TABLE,loadSteps 
*DIM,rotz5,TABLE,loadSteps 
*DIM,disX5,TABLE,loadSteps 
*DIM,disY5,TABLE,loadSteps 
*DIM,disZ5,TABLE,loadSteps 
*DIM,rotx6,TABLE,loadSteps 
*DIM,roty6,TABLE,loadSteps 
*DIM,rotz6,TABLE,loadSteps 
*DIM,disX6,TABLE,loadSteps 
*DIM,disY6,TABLE,loadSteps 
*DIM,disZ6,TABLE,loadSteps 
*DIM,rotx7,TABLE,loadSteps 
*DIM,roty7,TABLE,loadSteps 
*DIM,rotz7,TABLE,loadSteps 
*DIM,disX7,TABLE,loadSteps 
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*DIM,disY7,TABLE,loadSteps 
*DIM,disZ7,TABLE,loadSteps 
 
!Point 3???? 
 
*DIM,rotz3,TABLE,loadSteps 
*DIM,disX3,TABLE,loadSteps 
*DIM,disY3,TABLE,loadSteps 
 
*DIM,rotx12,TABLE,loadSteps 
*DIM,roty12,TABLE,loadSteps 
*DIM,rotz12,TABLE,loadSteps 
*DIM,disX12,TABLE,loadSteps 
*DIM,disY12,TABLE,loadSteps 
*DIM,disZ12,TABLE,loadSteps 
*DIM,rotx13,TABLE,loadSteps 
*DIM,roty13,TABLE,loadSteps 
*DIM,rotz13,TABLE,loadSteps 
*DIM,disX13,TABLE,loadSteps 
*DIM,disY13,TABLE,loadSteps 
*DIM,disZ13,TABLE,loadSteps 
*DIM,rotx14,TABLE,loadSteps 
*DIM,roty14,TABLE,loadSteps 
*DIM,rotz14,TABLE,loadSteps 
*DIM,disX14,TABLE,loadSteps 
*DIM,disY14,TABLE,loadSteps 
*DIM,disZ14,TABLE,loadSteps 
*DIM,rotx15,TABLE,loadSteps 
*DIM,roty15,TABLE,loadSteps 
*DIM,rotz15,TABLE,loadSteps 
*DIM,disX15,TABLE,loadSteps 
*DIM,disY15,TABLE,loadSteps 
*DIM,disZ15,TABLE,loadSteps 
 
 
 
!**************************Reactions forces node 
2******************************* 
 
*DIM,momx2,TABLE,loadsteps 
*DIM,momy2,TABLE,loadsteps 
*DIM,momz2,TABLE,loadsteps 
*DIM,fx2,TABLE,loadsteps 
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Appendix E: (continued) 
  
*DIM,fy2,TABLE,loadsteps 
*DIM,fz2,TABLE,loadsteps 
 
 
 
!**************************Reactions forces node 
3******************************* 
 
*DIM,momx3,TABLE,loadsteps 
*DIM,momy3,TABLE,loadsteps 
*DIM,momz3,TABLE,loadsteps 
*DIM,fx3,TABLE,loadsteps 
*DIM,fy3,TABLE,loadsteps 
*DIM,fz3,TABLE,loadsteps 
 
 
 
*Do,nn,1,loadSteps 
set,nn 
 
!**************************Displacements node 
8,(9,10,11),4,(5,6,7,)3,2,12,(13,14,15)****************************** 
 
*GET,rotx,Node,nkp8,ROT,X 
*SET,rotx8(nn),rotx 
*GET,roty,Node,nkp8,ROT,Y 
*SET,roty8(nn),roty 
*GET,rotz,Node,nkp8,ROT,Z 
*SET,rotz8(nn),rotz 
 
*GET,disX,Node,nkp8,U,X 
*SET,disX8(nn),disX 
*GET,disY,Node,nkp8,U,Y 
*SET,disY8(nn),disY 
*GET,disz,Node,nkp8,U,Z 
*SET,disZ8(nn),disz 
 
*GET,rotx,Node,nkp9,ROT,X 
*SET,rotx9(nn),rotx 
*GET,roty,Node,nkp9,ROT,Y 
*SET,roty9(nn),roty 
*GET,rotz,Node,nkp9,ROT,Z 
*SET,rotz9(nn),rotz 
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Appendix E: (continued) 
  
*GET,disX,Node,nkp9,U,X 
*SET,disX9(nn),disX 
*GET,disY,Node,nkp9,U,Y 
*SET,disY9(nn),disY 
*GET,disz,Node,nkp9,U,Z 
*SET,disZ9(nn),disz 
 
*GET,rotx,Node,nkp10,ROT,X 
*SET,rotx10(nn),rotx 
*GET,roty,Node,nkp10,ROT,Y 
*SET,roty10(nn),roty 
*GET,rotz,Node,nkp10,ROT,Z 
*SET,rotz10(nn),rotz 
 
*GET,disX,Node,nkp10,U,X 
*SET,disX10(nn),disX 
*GET,disY,Node,nkp10,U,Y 
*SET,disY10(nn),disY 
*GET,disz,Node,nkp10,U,Z 
*SET,disZ10(nn),disz 
 
*GET,rotx,Node,nkp11,ROT,X 
*SET,rotx11(nn),rotx 
*GET,roty,Node,nkp11,ROT,Y 
*SET,roty11(nn),roty 
*GET,rotz,Node,nkp11,ROT,Z 
*SET,rotz11(nn),rotz 
 
*GET,disX,Node,nkp11,U,X 
*SET,disX11(nn),disX 
*GET,disY,Node,nkp11,U,Y 
*SET,disY11(nn),disY 
*GET,disz,Node,nkp11,U,Z 
*SET,disZ11(nn),disz 
 
*GET,rotx,Node,nkp4,ROT,X 
*SET,rotx4(nn),rotx 
*GET,roty,Node,nkp4,ROT,Y 
*SET,roty4(nn),roty 
*GET,rotz,Node,nkp4,ROT,Z 
*SET,rotz4(nn),rotz 
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Appendix E: (continued) 
  
*GET,disX,Node,nkp4,U,X 
*SET,disX4(nn),disX 
*GET,disY,Node,nkp4,U,Y 
*SET,disY4(nn),disY 
*GET,disz,Node,nkp4,U,Z 
*SET,disZ4(nn),disz 
 
*GET,rotx,Node,nkp5,ROT,X 
*SET,rotx5(nn),rotx 
*GET,roty,Node,nkp5,ROT,Y 
*SET,roty5(nn),roty 
*GET,rotz,Node,nkp5,ROT,Z 
*SET,rotz5(nn),rotz 
 
*GET,disX,Node,nkp5,U,X 
*SET,disX5(nn),disX 
*GET,disY,Node,nkp5,U,Y 
*SET,disY5(nn),disY 
*GET,disz,Node,nkp5,U,Z 
*SET,disZ5(nn),disz 
 
*GET,rotx,Node,nkp6,ROT,X 
*SET,rotx6(nn),rotx 
*GET,roty,Node,nkp6,ROT,Y 
*SET,roty6(nn),roty 
*GET,rotz,Node,nkp6,ROT,Z 
*SET,rotz6(nn),rotz 
 
*GET,disX,Node,nkp6,U,X 
*SET,disX6(nn),disX 
*GET,disY,Node,nkp6,U,Y 
*SET,disY6(nn),disY 
*GET,disz,Node,nkp6,U,Z 
*SET,disZ6(nn),disz 
 
*GET,rotx,Node,nkp7,ROT,X 
*SET,rotx7(nn),rotx 
*GET,roty,Node,nkp7,ROT,Y 
*SET,roty7(nn),roty 
*GET,rotz,Node,nkp7,ROT,Z 
*SET,rotz7(nn),rotz 
 
*GET,disX,Node,nkp7,U,X 
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Appendix E: (continued) 
  
*SET,disX7(nn),disX 
*GET,disY,Node,nkp7,U,Y 
*SET,disY7(nn),disY 
*GET,disz,Node,nkp7,U,Z 
*SET,disZ7(nn),disz 
 
!Point 3???? 
 
*GET,rotz,Node,nkp3,ROT,Z 
*SET,rotz3(nn),rotz 
 
*GET,disX,Node,nkp3,U,X 
*SET,disX3(nn),disX 
*GET,disY,Node,nkp3,U,Y 
*SET,disY3(nn),disY 
 
 
*GET,rotx,Node,nkp12,ROT,X 
*SET,rotx12(nn),rotx 
*GET,roty,Node,nkp12,ROT,Y 
*SET,roty12(nn),roty 
*GET,rotz,Node,nkp12,ROT,Z 
*SET,rotz12(nn),rotz 
 
*GET,disX,Node,nkp12,U,X 
*SET,disX12(nn),disX 
*GET,disY,Node,nkp12,U,Y 
*SET,disY12(nn),disY 
*GET,disz,Node,nkp12,U,Z 
*SET,disZ12(nn),disz 
 
*GET,rotx,Node,nkp13,ROT,X 
*SET,rotx13(nn),rotx 
*GET,roty,Node,nkp13,ROT,Y 
*SET,roty13(nn),roty 
*GET,rotz,Node,nkp13,ROT,Z 
*SET,rotz13(nn),rotz 
 
*GET,disX,Node,nkp13,U,X 
*SET,disX13(nn),disX 
*GET,disY,Node,nkp13,U,Y 
*SET,disY13(nn),disY 
*GET,disz,Node,nkp13,U,Z 
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*SET,disZ13(nn),disz 
 
*GET,rotx,Node,nkp14,ROT,X 
*SET,rotx14(nn),rotx 
*GET,roty,Node,nkp14,ROT,Y 
*SET,roty14(nn),roty 
*GET,rotz,Node,nkp14,ROT,Z 
*SET,rotz14(nn),rotz 
 
*GET,disX,Node,nkp14,U,X 
*SET,disX14(nn),disX 
*GET,disY,Node,nkp14,U,Y 
*SET,disY14(nn),disY 
*GET,disz,Node,nkp14,U,Z 
*SET,disZ14(nn),disz 
 
*GET,rotx,Node,nkp15,ROT,X 
*SET,rotx15(nn),rotx 
*GET,roty,Node,nkp15,ROT,Y 
*SET,roty15(nn),roty 
*GET,rotz,Node,nkp15,ROT,Z 
*SET,rotz15(nn),rotz 
 
*GET,disX,Node,nkp15,U,X 
*SET,disX15(nn),disX 
*GET,disY,Node,nkp15,U,Y 
*SET,disY15(nn),disY 
*GET,disz,Node,nkp15,U,Z 
*SET,disZ15(nn),disz 
 
 
 
 
!**************************Reactions forces node 
2******************************* 
 
*GET,momx,Node,nkp2,RF,MX 
*SET,momx2(nn),momx 
*GET,fx,Node,nkp2,RF,FX 
*SET,fx2(nn),fx 
*GET,momy,Node,nkp2,RF,MY 
*SET,momy2(nn),momy 
*GET,fy,Node,nkp2,RF,FY 
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*SET,fy2(nn),fy 
*GET,momz,Node,nkp2,RF,MZ 
*SET,momz2(nn),momz 
*GET,fz,Node,nkp2,RF,FZ 
*SET,fz2(nn),fz 
 
 
!**************************Reactions forces node 
3******************************* 
 
*GET,momx,Node,nkp3,RF,MX 
*SET,momx3(nn),momx 
*GET,fx,Node,nkp3,RF,FX 
*SET,fx3(nn),fx 
*GET,momy,Node,nkp3,RF,MY 
*SET,momy3(nn),momy 
*GET,fy,Node,nkp3,RF,FY 
*SET,fy3(nn),fy 
*GET,momz,Node,nkp3,RF,MZ 
*SET,momz3(nn),momz 
*GET,fz,Node,nkp3,RF,FZ 
*SET,fz3(nn),fz 
 
*ENDDO 
 
/output,curvebeamarcsdevice%LAMBDAdg%,txt,,Append 
 
!***********************************************************************
*************** 
!***************FILE HEADER: BEAM 
DATA************************************************* 
!***********************************************************************
*************** 
 
*MSG,INFO,'t','w','R','E','arclength' 
%-8C %-8C %-8C %-8C %-8C 
 
*VWRITE,h2,b2,R,E2,arclength 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G 
 
!***********************************************************************
************ 
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!**************DISPLACEMENT DATA 
SET************************************************ 
!***********************************************************************
************ 
 
 
*MSG,INFO,'rotX8','rotY8','rotZ8','disX8','disY8','disZ8' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx8(1),roty8(1),rotz8(1),disX8(1),disY8(1),disZ8(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX9','rotY9','rotZ9','disX9','disY9','disZ9' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx9(1),roty9(1),rotz9(1),disX9(1),disY9(1),disZ9(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX10','rotY10','rotZ10','disX10','disY10','disZ10' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx10(1),roty10(1),rotz10(1),disX10(1),disY10(1),disZ10(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX11','rotY11','rotZ11','disX11','disY11','disZ11' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx11(1),roty11(1),rotz11(1),disX11(1),disY11(1),disZ11(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
 
*MSG,INFO,'rotX12','rotY12','rotZ12','disX12','disY12','disZ12' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx12(1),roty12(1),rotz12(1),disX12(1),disY12(1),disZ12(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX13','rotY13','rotZ13','disX13','disY13','disZ13' 
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%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx13(1),roty13(1),rotz13(1),disX13(1),disY13(1),disZ13(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX14','rotY14','rotZ14','disX14','disY14','disZ14' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx14(1),roty14(1),rotz14(1),disX14(1),disY14(1),disZ14(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX15','rotY15','rotZ15','disX15','disY15','disZ15' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx15(1),roty15(1),rotz15(1),disX15(1),disY15(1),disZ15(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX4','rotY4','rotZ4','disX4','disY4','disZ4' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,rotx4(1),roty4(1),rotz4(1),disX4(1),disY4(1),disZ4(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX5','rotY5','rotZ5','disX5','disY5','disZ5' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx5(1),roty5(1),rotz5(1),disX5(1),disY5(1),disZ5(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX6','rotY6','rotZ6','disX6','disY6','disZ6' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
 
*VWRITE,rotx6(1),roty6(1),rotz6(1),disX6(1),disY6(1),disZ6(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
*MSG,INFO,'rotX7','rotY7','rotZ7','disX7','disY7','disZ7' 
%-8C %-8C %-8C %-8C %-8C %-8C  
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*VWRITE,rotx7(1),roty7(1),rotz7(1),disX7(1),disY7(1),disZ7(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
 
!!POINTS 3 AND 2????? 
 
*MSG,INFO,'rotZ3','disX3','disY3' 
%-8C %-8C %-8C  
 
*VWRITE,rotz3(1),disX3(1),disY3(1) 
%16.8G %-16.8G %-16.8G 
 
 
 
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
3************************************************** 
!***********************************************************************
************ 
 
*MSG,INFO,'momx3','momy3','momz3','fx3','fy3','fz3' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,momx3(1),momy3(1),momz3(1),fx3(1),fy3(1),fz3(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
 
 
!***********************************************************************
************ 
!**************REACTIONS AT NODE 
2************************************************** 
!***********************************************************************
************ 
 
 
*MSG,INFO,'momx2','momy2','momz2','fx2','fy2','fz2' 
%-8C %-8C %-8C %-8C %-8C %-8C  
 
*VWRITE,momx2(1),momy2(1),momz2(1),fx2(1),fy2(1),fz2(1) 
%16.8G %-16.8G %-16.8G %-16.8G %-16.8G %-16.8G  
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!***********************************************************************
************ 
!***********************************************************************
************ 
!***********************************************************************
************ 
 
 
 
/output 
 
FINISH 
 
*ENDDO 
*ENDDO 
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Appendix F: MATLAB Code for a Specific Horizontal Buckling End-Loaded 

Curved Beam 

clear all 
 filename = ['curvebeam3arcs_l105','.txt']; 
%string1 = 'C:\DOCUME~1\despinos\'; 
string1 = 'C:\Documents and Settings\Diego\Desktop\ThesisHome'; 
%fid1 = fopen([string1,filename]); 
fid1 = fopen(filename);                % opens the file 
 
  
%%%%%%%%%%%%%%%%%READS DATA FROM FILE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
 
ABT = fread(fid1);                               % reads the file into 
variable ABT 
fclose(fid1);                                    %closes the data file 
GBT = native2unicode(ABT)';                      %#ok<N2UNI> %changes  
 
 
data from machine code to text 
 end1stheader   = findstr('disZ8', GBT);          % finds end of first 
header 
begin2ndheader = findstr('rotX9', GBT);          % finds beginning of 
second header 
end2ndheader   = findstr('disZ9', GBT);          % finds end of second  
 
 
header 
begin3ndheader = findstr('rotX10',GBT); 
end3ndheader   = findstr('disZ10', GBT); 
begin4ndheader = findstr('rotX11', GBT); 
end4ndheader   = findstr('disZ11', GBT); 
begin5ndheader = findstr('rotX12', GBT); 
end5ndheader   = findstr('disZ12', GBT); 
begin6ndheader = findstr('rotX13', GBT); 
end6ndheader   = findstr('disZ13', GBT); 
begin7ndheader = findstr('rotX14', GBT); 
end7ndheader   = findstr('disZ14', GBT); 
begin8ndheader = findstr('rotX15', GBT); 
end8ndheader   = findstr('disZ15', GBT); 
begin9ndheader = findstr('rotX4', GBT); 
end9ndheader   = findstr('disZ4', GBT); 
begin10ndheader = findstr('rotX5', GBT); 
end10ndheader   = findstr('disZ5', GBT); 
begin11ndheader = findstr('rotX6', GBT); 
end11ndheader   = findstr('disZ6', GBT); 
begin12ndheader = findstr('rotX7', GBT); 
end12ndheader   = findstr('disZ7', GBT); 
begin13ndheader = findstr('rotZ3', GBT); 
end13ndheader   = findstr('disY3', GBT); 
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begin14ndheader = findstr('momx3', GBT); 
end14ndheader   = findstr('fz3'  , GBT); 
begin15ndheader = findstr('momx2', GBT); 
end15ndheader   = findstr('fz2'  , GBT); 
begin16ndheader = findstr('arclengt', GBT); 
end16ndheader   = findstr('rotX8'  , GBT); 
  
  
%%%%%%%%%%%%% turns the data into a numerical 
matrix%%%%%%%%%%%%%%%%%%%%%%% 
DATA1 = str2num(GBT(end1stheader(end)+6:begin2ndheader(end)-1));  
DATA2 = str2num(GBT(end2ndheader(end)+6:begin3ndheader(end)-1));  
DATA3 = str2num(GBT(end3ndheader(end)+7:begin4ndheader(end)-1));  
DATA4 = str2num(GBT(end4ndheader(end)+7:begin5ndheader(end)-1)); 
DATA5 = str2num(GBT(end5ndheader(end)+7:begin6ndheader(end)-1)); 
DATA6 = str2num(GBT(end6ndheader(end)+7:begin7ndheader(end)-1)); 
DATA7 = str2num(GBT(end7ndheader(end)+7:begin8ndheader(end)-1)); 
DATA8 = str2num(GBT(end8ndheader(end)+7:begin9ndheader(end)-1)); 
DATA9 = str2num(GBT(end9ndheader(end)+7:begin10ndheader(end)-1)); 
DATA10 = str2num(GBT(end10ndheader(end)+6:begin11ndheader(end)-1)); 
DATA11 = str2num(GBT(end11ndheader(end)+6:begin12ndheader(end)-1)); 
DATA12 = str2num(GBT(end12ndheader(end)+6:begin13ndheader(end)-1)); 
DATA13 = str2num(GBT(end13ndheader(end)+6:begin14ndheader(end)-1)); 
DATA14 = str2num(GBT(end14ndheader(end)+6:begin15ndheader(end)-1)); 
DATA15 = str2num(GBT(end15ndheader(end)+4:end));                    
DATA16 = str2num(GBT(begin16ndheader(end)+8:end16ndheader(end)-1)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%FORCES, DISPLACEMENTS AND 
MOMENTD%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
  
rotx8 = DATA1(:,1); 
roty8 = DATA1(:,1); 
rotz8 = DATA1(:,3); 
disx8 = DATA1(:,4); 
disy8 = DATA1(:,5); 
disz8 = DATA1(:,6); 
  
rotx9 = DATA2(:,1); 
roty9 = DATA2(:,1); 
rotz9 = DATA2(:,3); 
disx9 = DATA2(:,4); 
disy9 = DATA2(:,5); 
disz9 = DATA2(:,6); 
  
rotx10 = DATA3(:,1); 
roty10 = DATA3(:,1); 
rotz10 = DATA3(:,3); 
disx10 = DATA3(:,4); 
disy10 = DATA3(:,5); 
disz10 = DATA3(:,6);  
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rotx11 = DATA4(:,1); 
roty11 = DATA4(:,1); 
rotz11 = DATA4(:,3); 
disx11 = DATA4(:,4); 
disy11 = DATA4(:,5); 
disz11 = DATA4(:,6); 
  
  
rotx12 = DATA5(:,1); 
roty12 = DATA5(:,1); 
rotz12 = DATA5(:,3); 
disx12 = DATA5(:,4); 
disy12 = DATA5(:,5); 
disz12 = DATA5(:,6); 
  
rotx13 = DATA6(:,1); 
roty13 = DATA6(:,1); 
rotz13 = DATA6(:,3); 
disx13 = DATA6(:,4); 
disy13 = DATA6(:,5); 
disz13 = DATA6(:,6); 
  
rotx14 = DATA7(:,1); 
roty14 = DATA7(:,1); 
rotz14 = DATA7(:,3); 
disx14 = DATA7(:,4); 
disy14 = DATA7(:,5); 
disz14 = DATA7(:,6); 
  
rotx15 = DATA8(:,1);  
roty15 = DATA8(:,1); 
rotz15 = DATA8(:,3); 
disx15 = DATA8(:,4); 
disy15 = DATA8(:,5); 
disz15 = DATA8(:,6); 
  
  
rotx4 = DATA9(:,1); 
roty4 = DATA9(:,1); 
rotz4 = DATA9(:,3); 
disx4 = DATA9(:,4); 
disy4 = DATA9(:,5); 
disz4 = DATA9(:,6); 
  
rotx5 = DATA10(:,1); 
roty5 = DATA10(:,1); 
rotz5 = DATA10(:,3); 
disx5 = DATA10(:,4); 
disy5 = DATA10(:,5); 
disz5 = DATA10(:,6);  
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rotx6 = DATA11(:,1); 
roty6 = DATA11(:,1); 
rotz6 = DATA11(:,3); 
disx6 = DATA11(:,4); 
disy6 = DATA11(:,5); 
disz6 = DATA11(:,6); 
  
rotx7 = DATA12(:,1); 
roty7 = DATA12(:,1); 
rotz7 = DATA12(:,3); 
disx7 = DATA12(:,4); 
disy7 = DATA12(:,5); 
disz7 = DATA12(:,6); 
  
rotZ3 = DATA13(:,1); 
disx3 = DATA13(:,2); 
disy3 = DATA13(:,3); 
  
momx3 = DATA14(:,1); 
momy3 = DATA14(:,2); 
momz3 = DATA14(:,3); 
fx3   = DATA14(:,4); 
fy3   = DATA14(:,5); 
fz3   = DATA14(:,6); 
  
momx2 = DATA15(:,1); 
momy2 = DATA15(:,2); 
momz2 = DATA15(:,3); 
fx2   = DATA15(:,4); 
fy2   = DATA15(:,5); 
fz2   = DATA15(:,6); 
  
arclength = DATA16(:,5); 
R = DATA16(:,3); 
h2 = DATA16(:,1); 
  
x2 = zeros(70,1); 
y2 = zeros(70,1); 
z2 = zeros(70,1); 
  
x3 = R*sin(arclength/R)+disx3;    
y3 = R*cos(arclength/R)+disy3; 
z3 = zeros(70,1); 
R3 = sqrt(x3.^2+y3.^2); 
  
x4 = R*sin(arclength/(2*R))+disx4;    
y4 = R*cos(arclength/(2*R))+disy4; 
z4 = 0+disz4; 
R4 = sqrt(x4.^2+y4.^2+z4.^2); 
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Appendix F: (continued) 
  
x8 = R*sin(arclength/(4*R))+disx8;    
y8 = R*cos(arclength/(4*R))+disy8; 
z8 = h2/2+disz8; 
R8 = sqrt(x8.^2+y8.^2+z8.^2); 
  
x12 = R*sin((arclength*3)/(4*R))+disx12;    
y12 = R*cos((arclength*3)/(4*R))+disy12; 
z12 = h2/2+disz12; 
R12 = sqrt(x12.^2+y12.^2+z12.^2); 
  
x13 = R*sin((arclength*3)/(4*R))+disx13;    
y13 = R*cos((arclength*3)/(4*R))+disy13; 
z13 = h2/2+1+disz13; 
  
x14 = R*sin((arclength*3)/(4*R))*(R-1)/R+disx14;    
y14 = R*cos((arclength*3)/(4*R))*(R-1)/R+disy14; 
z14 = h2/2+disz14; 
  
x15 = R*sin((arclength*3)/(4*R))+cos((arclength*3)/(4*R))+disx15;    
y15 = R*cos((arclength*3)/(4*R))-sin((arclength*3)/(4*R))+disy15; 
z15 = h2/2+disz15; 
  
  
%%%thetas with number are moving on plane phis with number are vertical 
%%%angle out plane 
theta3=atan2(y3,x3); 
  
theta8=atan2(y8,x8); 
phi8=atan2(z8,sqrt(x8.^2+y8.^2)); 
  
theta12=atan2(y12,x12); 
phi12=atan2(z12,sqrt(x12.^2+y12.^2)); 
  
theta4=atan2(y4,x4); 
phi4=atan2(z4,sqrt(x4.^2+y4.^2)); 
  
Dx = [x15-x12 y15-y12 z15-z12]'; %Stick original parallel with Cx  
Dz = [x13-x12 y13-y12 z13-z12]'; %Stick original parallel with Cz  
%Dy= [x14-x12 y14-y12 z14-z12]'; %Stick original antiparallel with Cy  
Dy = [x12-x14 y12-y14 z12-z14]'; %use opposite of stick direction  
  
A = eye(3);%identity Matrix 
  
for i = 1:length(rotz12) 
     
R_B = [ cos( theta12(i)-(pi/2)) -sin(theta12(i)-(pi/2)) 0 ; 
    sin(theta12(i)-(pi/2))  cos( theta12(i)-(pi/2)) 0 ;  
    0 0 1]; 
%%%%Beta out plane angle of point 12 = phi 12 
BETA = atan2(z12,sqrt(x12.^2+y12.^2));  
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Appendix F: (continued) 
  
R_C = [1 0 0;0 cos(BETA(i)) -sin(BETA(i)) ;0 sin(BETA(i)) 
cos(BETA(i))]; 
  
Bx(:,i) = R_C*A(:,1); 
By(:,i) = R_C*A(:,2); 
Bz(:,i) = R_C*A(:,3); 
  
  
  
Cx(:,i) = R_B*Bx(:,i); 
Cy(:,i) = R_B*By(:,i); 
Cz(:,i) = R_B*Bz(:,i); 
  
  
RR = [Dx(:,i) Dy(:,i) Dz(:,i)]*inv([Cx(:,i) Cy(:,i) Cz(:,i)]); 
  
ROT(i,:,:) = RR; 
  
v1(i)=RR(1,2)*RR(2,3)-(RR(2,2)-1)*RR(1,3); 
v2(i)=RR(2,1)*RR(1,3)-(RR(1,1)-1)*RR(2,3); 
v3(i)=(RR(1,1)-1)*(RR(2,2)-1)-(RR(1,2)*RR(2,3)); 
  
V=[v1(i) v2(i) v3(i)]; 
TRC=trace(RR); 
CDROTMAG(i)=acos((TRC-1)/2);% Acording to plannar case CDROTMAG=theta0 
  
end 
  
%Shows Position of the axis of rotation with respec to point 12. 
figure(1) 
quiver3(x12,y12,z12,v1,v2,v3) 
%plot(rotZ3,[x12,y12-100,z12,v1',v2',v3']) 
     
  
%Shows Linear relationship between Theta0 and RotZ3 
figure(2) 
clf 
hold on 
plot(rotZ3,CDROTMAG) 
  
%If Cy and Dy are matching then RR is a rotacion about the Cy 
figure(3) 
clf 
hold on 
%quiver3(x12,y12,z12,v1,v2,v3)   
plot(rotZ3,Cy(1,:)) 
plot(rotZ3,Cy(2,:),'g') 
plot(rotZ3,Cy(3,:),'r') 
plot(rotZ3,Dy(1,:),'c') 
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Appendix F: (continued) 
  
plot(rotZ3,Dy(2,:),'m') 
plot(rotZ3,Dy(3,:),'y') 
plot(rotZ3,x12/R,'c*') 
plot(rotZ3,y12/R,'m*') 
plot(rotZ3,z12/R,'y*') 
  
  
% Cy -Radial, Cz - longitude, Cx - latitude, Psi-angel b/w C and D 
Psiy= acos(dot(Cy,Dy)./(sqrt(dot(Cy,Cy)).*sqrt(dot(Dy,Dy))))*180/pi; 
Psix= 
real(acos(dot(Cx,Dx)./(sqrt(dot(Cx,Cx)).*sqrt(dot(Dx,Dx)))))*180/pi; 
Psiz= acos(dot(Cz,Dz)./(sqrt(dot(Cz,Cz)).*sqrt(dot(Dz,Dz))))*180/pi; 
  
rot_val(:,1) = 
real(acos((dot(Cx,Dx)./(sqrt(dot(Cx,Cx)).*sqrt(dot(Dx,Dx))))))*180/pi; 
rot_val(:,2) = 
asin((dot(Cx,Dz)./(sqrt(dot(Cx,Cx)).*sqrt(dot(Dx,Dx)))))*180/pi; 
rot_val(:,3) = 
acos((dot(Cz,Dz)./(sqrt(dot(Cx,Cx)).*sqrt(dot(Dx,Dx)))))*180/pi; 
rot_val(:,4) = -
asin((dot(Cz,Dx)./(sqrt(dot(Cx,Cx)).*sqrt(dot(Dx,Dx)))))*180/pi; 
  
%Psi-angel b/w C and D-- b/w cy and dy must be zero because radial 
direction no twist! 
figure(4) 
clf 
hold on 
plot(Psiy,'r-*') 
plot(Psix,'b-*') 
plot(Psiz,'g-*') 
  
% Checks radial displacement of keypoints 
figure(5) 
clf 
hold on 
plot(R4/R,'r') 
plot(R8/R,'b') 
plot(R12/R,'m') 
plot(R3/R,'k') 
  
%normal vector to Cy, and Dy, X,Z 
CDY=cross(Cy,Dy)./([1;1;1]*(sin(Psiy*pi/180).*(sqrt(dot(Cy,Cy)).*sqrt(d
ot(Dy,Dy))))); 
CDX=cross(Cx,Dx);  
CDZ=cross(Cz,Dz); 
  
%vectors from center of sphere to point 12 must match Cy and Dy 
figure(6) 
clf 
hold on 
quiver3(zeros(1,70),zeros(1,70),zeros(1,70),(x12)/R,(y12)/R,(z12)/R,'b'
) 
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Appendix F: (continued) 
  
quiver3(zeros(1,70),zeros(1,70),zeros(1,70),Cy(1,:),Cy(2,:),Cy(3,:),'r'
) 
quiver3(zeros(1,70),zeros(1,70),zeros(1,70),Dy(1,:),Dy(2,:),Dy(3,:),'g'
) 
view(3) 
grid on 
  
% checks quarter versus half symmetry for HKP leg, perfect half symetry 
not 
% perfect quarter symetry 
  
error_theta8 =(90-theta8*180/pi)*4 - (90-theta3*180/pi); 
error_theta4 =(90-theta4*180/pi)*2 - (90-theta3*180/pi); 
error_theta12 =(90-theta12*180/pi)*4/3 - (90-theta3*180/pi); 
  
figure(7) 
clf 
hold on 
plot(error_theta12, 'r'); 
plot(error_theta4, 'b' ); 
plot(error_theta8, 'k'); 
% X axis  will be captheta 
ylabel('error (deg)') 
  
error1=abs(theta4-theta8); 
error2=abs(theta12-theta4); 
error3=abs(theta8-pi/2); 
error4=abs(theta3-theta12); 
  
checcc=error1-error2 
checcc2=error3-error4 
  
%Shows errors betwenn half su=ymety and quater symetry thetas 
figure(8) 
clf 
hold on 
plot([1:70],[error1, error2, error3, error4 ]) 
  
figure(81) 
clf 
hold on 
plot([1:70],[ error3, error4 ]) 
  
  
% checks quarter versus half symmetry for HKP leg 
error_phia = phi8*180/pi*2 - phi4*180/pi; 
error_phib = phi8*180/pi - phi12*180/pi; 
error_phic =phi4*180/pi - phi12*180/pi*2;  
  
error5=abs(phi4-phi8); 
error6=abs(phi12-phi4); 
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Appendix F: (continued) 
  
error7=phi8; 
error8=phi12; 
  
%Shows errors betwenn half su=ymety and quater symetry phis 
figure(9) 
clf 
hold on 
plot([1:70],[error5 error6 error7 error8]); 
  
% checks quarter versus half symmetry for HKP leg 
figure(10) 
clf 
hold on 
plot(error_phia, 'r'); 
plot(error_phib, 'b' ); 
plot(error_phic, 'k'); 
% X axis  will be captheta 
ylabel('error (deg)') 
  
%Show the traagectory of points 12 4 and 8  
figure(11) 
clf 
hold on 
plot3(x8,y8,z8, 'r*',x4,y4,z4,'b*',x12,y12,z12,'g*'); 
grid on 
axis equal 
view(3) 
  
scale=1/8; 
  
%Shows that most of the force is apply in the x direction the y and z 
%componets of the force are close to 0 
figure(12) 
clf 
hold on 
plot(sqrt(fz3.^2+fx3.^2+fy3.^2)) 
hold on 
plot(fx3,'r') 
plot(fy3,'g') 
plot(fz3,'k') 
grid on 
  
%Shows the reaction forces vectors at the fix point 2 
figure(13) 
quiver3(x2,y2,z2,fx2,fy2,fz2) 
view(3) 
hold on 
  
%Show that mom x and y are equal and apposite at points 2 and 3 
figure(14) 
clf 
hold on 
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Appendix F: (continued) 
  
quiver(x2,y2,momx3,momy3,0,'b.') 
quiver(x2,y2,momx2,momy2,0,'r.') 
view(3) 
hold on 
grid on 
  
%Shows the moment vector behavior on point 3 as it moves  
figure(15) 
quiver3(x3,y3,z3,momx3,momy3,momz3,0) 
view(3) 
hold on 
  
%beta and alpha are radians 
% %beta = phi8; 
% %alpha= pi/2-theta8 
%  
% %l = 100; 
% %a= l+disx8;   
% %b =disz8; 
%PHI =arclength/R - alpha 
  
%beta and alpha are radians 
  
%CHANGED DEFFINITION OF ALPHA AND BETA!!!! 
alpha= (theta4-theta3)/2;%%%change of theta of curved beam center 
  
%%%% beta lower case half of out plane angle of center of beam = BETA 
of 
%%%% point 12 because of symetry there are some error between half 
symetry 
%%%% and quater symetry!!! 
beta = phi4/2; 
  
PHI = alpha(1)-alpha;%not vertical phi change in alpha!!! 
  
  
  
  
  
  
%%%%%%%DEFINING l,a,b,gamma,Captheta,theta0,torque%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
gamma = 4*R/arclength*atan2(1-cos(beta).*cos(PHI),cos(beta).*sin(PHI)); 
%planar gamma = -(a.^2 - 2*a*l+l^2+b.^2)./(2*a*l-2*l^2); 
  
theta = atan2(tan(beta),sin((gamma*arclength/(4*R))-PHI)); 
%atan2(b,a-(1-gamma)*l); 
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Appendix F: (continued) 
  
lambda=arclength/(R*4); 
  
% Phi=atan2(1-
cos(theta),cot(gamma*lambda)+(cos(theta).*tan(gamma*lambda))) 
% Beta=asin(sin(gamma*lambda).*sin(theta)) 
% Alpha=lambda-Phi 
  
% figure(12) 
% clf 
% hold on 
% plot(PHI,alpha,'b*',Phi,alpha,'b') 
% plot(beta,alpha,'g*',Beta,alpha,'g') 
% plot(alpha,alpha,'r*',Alpha,alpha,'r') 
  
  
  
% rotation of point 3---to find M12 
r=[x12-x3 y12-y3 z12-z3]; 
M12 = cross(r,[fx3 fy3 fz3]); 
mom12=[momx3 momy3 momz3]-M12; 
  
momx12=mom12(:,1); 
momy12=mom12(:,2); 
momz12=mom12(:,3); 
  
Magmom12=sqrt(momx12.^2+momy12.^2+momz12.^2); 
  
MAXMagmom12=max(Magmom12); 
  
M12=Magmom12/MAXMagmom12; 
  
%Compares the behavior of the reaction moment vectors at point 12 and 3 
as 
%the mechanism moves 
figure(16) 
clf 
hold on 
quiver3(x12,y12,z12,momx12,momy12,momz12) 
quiver3(x3,y3,z3,momx3,momy3,momz3, 'r') 
view(3) 
  
  
 M_Mag = sqrt(momx3.^2+momy3.^2+momz3.^2); 
 M_Mag_max= max(M_Mag); 
  
% M_theta = atan2(momy3,momx3) 
% M_phi = atan2(momz3,sqrt(momy3.^2+momx3.^2)) 
  
%Shows most of the reaction force at 3 happens on the x direction,  
%most of the reaction moment at 3 ias about the y  
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Appendix F: (continued) 
  
% and the moments at 12 are close to zero 
%momz12 represent twist about z axis must be close to zero 
  
figure(17) 
clf 
hold on 
plot(sqrt(fz3.^2+fx3.^2+fy3.^2)) 
plot(sqrt(momx12.^2+momy12.^2+momz12.^2),'--') 
plot(sqrt(momx3.^2+momy3.^2+momz3.^2),'*') 
hold on 
plot(fx3,'r') 
plot(fy3,'g') 
plot(fz3,'k') 
plot(momx12,'r--') 
plot(momy12,'g--') 
plot(momz12,'k--') 
plot(momx3,'r*') 
plot(momy3,'g*') 
plot(momz3,'k*') 
  
  
theta(1) = 0; 
theta0 = CDROTMAG; 
  
%Compares behavior of point 3 and 12 
figure(18) 
clf 
hold on 
plot3(x12,y12,z12,'*',x3,y3,0*x3,'*') 
view(3) 
  
theta(1) =0; 
theta0 = CDROTMAG; 
  
 E = 169000; 
  
  b2 =arclength/20; 
  
  I = (b2*h2^3)/12; 
   
  
  M = (M_Mag*arclength^2)/(E*I);% Nondimensionalization 
  M_max = max(M); 
   
  %Scales moment between 0 and 1 
  M = M/M_max; 
  R1 = normrnd(0.1,.1,[size(M)]);  
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Appendix F: (continued) 
  
 X = [ones(size(M(2:end))) 1./M(2:end) 1./M(2:end).^2 1.*M(2:end) 
1.*M(2:end).^2]; 
  Y = gamma(2:end); 
   
  B = inv(X'*X)*X'*Y; 
  
 %Gamma = 
1./(B(1)+B(2)./M+B(3)./M.^2+B(4)./M.^3+B(5)./M.^4+B(6)./M.^5); 
  Gamma = B(1)+B(2)./M+B(3)./M.^2 +B(4).*M +B(5).*M.^2; 
   
  Csgamma=POLYFIT(M*M_max,gamma,0); 
   
  %Theta = atan2(b,a-(1-Gamma)*l); 
  Theta = atan2(tan(beta),sin((Gamma*arclength/(4*R))-PHI)); 
   
  %ThetaC= atan2(b,a-(1-.75)*l); 
  ThetaC = atan2(tan(beta),sin((  Csgamma*arclength/(4*R))-PHI)); 
   
  %gives aproximation constant Ctheta (theta0=(Ctheta)*CAPtheta 
   
   
  Cstheta=POLYFIT(Theta(2:end),(theta0(2:end)./Theta(2:end)')',0); 
   
  figure(19) 
  clf 
  hold on 
  
plot(Theta(2:end)*180/pi,theta0(2:end)./Theta(2:end)','b',Theta(2:end)*
180/pi,Cstheta.*ones(69,1)','r') 
   
   
  %OJO FOR THIS ARC 105%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %Ctheta=1.3427%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
   
   
  %%%Shows the aproximation of theta0=Ctheta*Theta%%%%%%%% 
  figure(20) 
  clf  
  hold on 
  plot(Theta(2:end)*180/pi,theta0(2:end)*180/pi,'r') 
  plot(Theta(2:end)*180/pi,Theta(2:end)*Cstheta*180/pi,'b') 
   
   
   
  
epsilon = gamma(2:end)-Gamma(2:end); 
  SST = sum((gamma(2:end)-mean(gamma(2:end))).^2); 
  SSE = sum(epsilon.^2); 



www.manaraa.com

 

143 

Appendix F: (continued) 
  
  s_squared = SSE/(length(gamma(2:end))-length(B)); 
  s = sqrt(s_squared); 
  rsqrd = 1- SSE/SST; 
   
  Var_b = inv(X'*X)*s_squared; 
  X_ortho = X'*X; 
  [V,D] = eig(X_ortho); 
   
  X2(:,1) = X*V(:,1); 
  X2(:,2) = X*V(:,2); 
  X2(:,3) = X*V(:,3); 
  X2(:,4) = X*V(:,4); 
  X2(:,5) = X*V(:,5); 
   
  C = inv(X2'*X2)*X2'*Y; 
  %Gamma2 = 
C(1)*X2(:,1)+C(2)*X2(:,2)+C(3)*X2(:,3)+C(4)*X2(:,4)+C(5)*X2(:,5); 
  Gamma2 = 
C(1)*X2(:,1)+C(2)*X2(:,2)+C(3)*X2(:,3)+C(4)*X2(:,4)+C(5)*X2(:,5); 
   
  %Theta2 = atan2(b(2:end),a(2:end)-(1-Gamma2)*l); 
   
  
  epsilon2 = gamma(2:end)-Gamma2; 
  SSE2 = sum(epsilon2.^2); 
  s_squared2 = SSE2/(length(gamma(2:end))-length(C)); 
  s2 = sqrt(s_squared2); 
  rsqrd2 = 1- SSE2/SST 
   
  Var_c = inv(X2'*X2)*s_squared2; 
   
  B1_prime = 
C(1)*V(1,1)+C(2)*V(1,2)+C(3)*V(1,3)+C(4)*V(1,4)+C(5)*V(1,5); % compare 
with B(1) 
  B2_prime = 
C(1)*V(2,1)+C(2)*V(2,2)+C(3)*V(2,3)+C(4)*V(2,4)+C(5)*V(2,5);% compare 
with B(2) 
  B3_prime = 
C(1)*V(3,1)+C(2)*V(3,2)+C(3)*V(3,3)+C(4)*V(3,4)+C(5)*V(3,5); % compare 
with B(3) 
  B4_prime = 
C(1)*V(4,1)+C(2)*V(4,2)+C(3)*V(4,3)+C(4)*V(4,4)+C(5)*V(4,5); % compare 
with B(4) 
  B5_prime = 
C(1)*V(5,1)+C(2)*V(5,2)+C(3)*V(5,3)+C(4)*V(5,4)+C(5)*V(5,5); % compare 
with B(5) 
   
  B_var(1) = 
abs(sqrt(Var_c(1,1))*V(1,1)+sqrt(Var_c(2,2))*V(1,2)+sqrt(Var_c(3,3))*V(
1,3)+sqrt(Var_c(4,4))*V(1,4)+sqrt(Var_c(5,5))*V(1,5));  
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Appendix F: (continued) 
  
B_var(2) = 
abs(sqrt(Var_c(1,1))*V(2,1)+sqrt(Var_c(2,2))*V(2,2)+sqrt(Var_c(3,3))*V(
2,3)+sqrt(Var_c(4,4))*V(2,4)+sqrt(Var_c(5,5))*V(2,5)); 
  B_var(3) = 
abs(sqrt(Var_c(1,1))*V(3,1)+sqrt(Var_c(2,2))*V(3,2)+sqrt(Var_c(3,3))*V(
3,3)+sqrt(Var_c(4,4))*V(3,4)+sqrt(Var_c(5,5))*V(3,5));  
  B_var(4) = 
abs(sqrt(Var_c(1,1))*V(4,1)+sqrt(Var_c(2,2))*V(4,2)+sqrt(Var_c(3,3))*V(
4,3)+sqrt(Var_c(4,4))*V(4,4)+sqrt(Var_c(5,5))*V(4,5));  
  B_var(5) = 
abs(sqrt(Var_c(1,1))*V(5,1)+sqrt(Var_c(2,2))*V(5,2)+sqrt(Var_c(3,3))*V(
5,3)+sqrt(Var_c(4,4))*V(5,4)+sqrt(Var_c(5,5))*V(5,5)); 
   
  B_std = sqrt(B_var); 
  % 95 % 2 sided confidence interval ie mean + or - interval 
   
   t_statistic = tinv(.975,length(Y)-length(B)); 
   CI = t_statistic*B_std 
   Gamma_minus = B(1)-CI(1)+(B(2)-CI(2))./M+(B(3)-CI(3))./M.^2 +(B(4)-
CI(4)).*M +(B(5)-CI(5)).*M.^2; 
   Gamma_plus = B(1)+CI(1)+(B(2)+CI(2))./M+(B(3)+CI(3))./M.^2 
+(B(4)+CI(4)).*M +(B(5)+CI(5)).*M.^2; 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(41) 
clf 
plot(Gamma(2:end),M(2:end)*M_max,'b', 
Gamma_minus(2:end),M(2:end)*M_max,'r', 
Gamma_plus(2:end),M(2:end)*M_max,'g'); 
    
    
   %%%%%%Calculations Using model 
lambda=arclength/(R*4); 
Phi=atan2(1-
cos(Theta),cot(Gamma*lambda)+(cos(Theta).*tan(Gamma*lambda))); 
Beta=asin(sin(Gamma*lambda).*sin(Theta)); 
Alpha=lambda-Phi; 
  
%Shows that the equality of Phi, Beta and Alpha when found using gamma 
vs. 
%the ones obtain using the data guiven by ansys 
figure(21) 
clf 
hold on 
plot(PHI(2:end),alpha(2:end),'b*',Phi(2:end),alpha(2:end),'k') 
plot(beta(2:end),alpha(2:end),'g*',Beta(2:end),alpha(2:end),'k') 
plot(alpha(2:end),alpha(2:end),'r*',Alpha(2:end),alpha(2:end),'k') 
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Appendix F: (continued) 
  
%Show range of gammas 
figure(22) 
plot([Gamma(2:end) Gamma_minus(2:end) Gamma_plus(2:end)]) 
    
  
 %%%%%%%%%%%FIGURE 1 alpha vs beta 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(23); 
clf 
plot(alpha,beta,'b*', Alpha(2:end),Beta(2:end),'r',(lambda-atan2(1-
cos(ThetaC),cot(  Csgamma*lambda)+(cos(ThetaC).*tan(  
Csgamma*lambda)))),asin(sin(  Csgamma*lambda).*sin(ThetaC)),'g-'); 
  
  
%%%%%%%%%%%FIGURE 2 M vs theta 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(24); 
clf 
plot(M,theta*180/pi,'b*',M(2:end),Theta(2:end)*180/pi,'R',M(2:end),Thet
aC(2:end)*180/pi,'G-'); 
  
  
  
%%%%%%%%%%%FIGURE 3 M vs gamma 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(25); 
clf 
plot(gamma,M*M_max,'b*',Gamma(2:end),M(2:end)*M_max,'R', 
Csgamma,M*M_max, 'G*'); 
% G3c = ylabel('\gamma'); 
% set(G3c,'Rotation',0,'fontsize' ,12) 
% mytexstr = '$\frac{M  l^2}{EI}$'; 
% Gc= 
xlabel(mytexstr,'interpreter','latex','fontsize',12,'units','norm'); 
 G4c = legend('Data','\gamma*','\gamma'); 
  
% hold on 
  
  
  
  
%%%%%%%%%%%ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
              erroro =   (alpha - Alpha).^2 + (beta - Beta).^2; 
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Appendix F: (continued) 
  
              %erroro =  ( a/l - ((1-Gamma)+Gamma.*cos(Theta))).^2 + 
(b/l - Gamma.*sin(Theta)).^2; 
              %disp_mag = ((((1-Gamma)+Gamma.*cos(Theta))-
a(round(end/3))/l).^2+(Gamma.*sin(Theta)-b(round(end/3))/l).^2).^.5; 
               
             total_erroro = 
trapz(M(2:end),erroro(2:end));%+trapz(Gamma(2:end),erroro(2:end)); 
             %total_erroro = sqrt(max(erroro(2:end)./diff(M)))   
  
              
%%%Define tangent force get rid of radial component does not do work           
n_r3 = [x3 y3]./(sqrt(x3.^2+y3.^2)*[1 1]); 
F3 = [fx3 fy3]; 
F_r3 = (dot(F3',n_r3')'*[1 1]).*n_r3;              
Ft_3=F3-F_r3; 
  
q=Ft_3(1:70)'; 
p=Ft_3(71:140)'; 
  
Ftan=sqrt(q.^2+p.^2); 
  
%displacement vector! and its 1st derivative 
Z3=[R*cos(pi/2-4*lambda+(4*PHI)) R*sin(pi/2-4*lambda+(4*PHI))]; 
dZ3=[-R*sin(pi/2-4*lambda+(4*PHI)) R*cos(pi/2-4*lambda+(4*PHI))]; 
Y1=dZ3(1:70)'; 
X1=dZ3(71:140)'; 
dZ4=sqrt(Y1.^2+X1.^2); 
  
%check if displacement vector is correct 
figure(26) 
clf  
hold on 
plot(x3,y3,'r',Z3(:,1),Z3(:,2),'b'); 
  
d_Ctheta_Phi=(sec(Phi)).^2./((sin(Theta)./((cot(Gamma*lambda)+cos(Theta
).*tan(Gamma*lambda)))+(((1-
cos(Theta)).*(sin(Theta).*tan(Gamma*lambda)))./((cot(Gamma*lambda)+cos(
Theta).*tan(Gamma*lambda)).^2)))); 
d_Phi_Ctheta=(sin(Theta)./((sec(Phi)).^2.*(cot(Gamma*lambda)+cos(Theta)
.*tan(Gamma*lambda)))+(((1-
cos(Theta)).*(sin(Theta).*tan(Gamma*lambda)))./((sec(Phi)).^2.*(cot(Gam
ma*lambda)+cos(Theta).*tan(Gamma*lambda)).^2))); 
  
  
  
%d_Phi_Ctheta2=(1/(sec(Phi)).^2)'.*((sin(Theta)./(cot(Gamma*lambda)+cos
(Theta).*tan(Gamma*lambda)))+(((1-
cos(Theta)).*(sin(Theta).*tan(Gamma*lambda)))./((cot(Gamma*lambda)+cos(
Theta).*tan(Gamma*lambda)).^2))); 
  
%Checking 
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Appendix F: (continued) 
  
diff_T_P=diff(Theta(2:end))./diff(Phi(2:end)); 
%diff_T_P=(Theta(4:end)-Theta(2:end-2))./(Phi(4:end)-Phi(2:end-2)) 
diff_P_T=diff(Phi(2:end))./diff(Theta(2:end)); 
%diff_P_T=(Phi(4:end)-Phi(2:end-2))./(Theta(4:end)-Theta(2:end-2)) 
  
  
check1=diff_T_P-d_Ctheta_Phi(3:end); 
check2=diff_P_T-d_Phi_Ctheta(3:end); 
check3=(ones(69,1)./d_Ctheta_Phi(2:end))-d_Phi_Ctheta(2:end); 
check4=(180/pi*acos(dot(dZ3',F_r3')./(dot(dZ3',dZ3').*dot(F_r3',F_r3'))
.^.5))'; 
  
%%Check deffirentiation of cap theta with respect to phi 
figure(27) 
clf  
hold on 
plot(diff_T_P,'r') 
plot(d_Ctheta_Phi(3:end),'b') 
  
  
%Check deffirentiation of phi with respect to cap theta 
figure(28) 
clf  
hold on 
plot(diff_P_T,'r') 
plot(d_Phi_Ctheta(3:end),'b') 
  
  
%WORK done by Ft 
dWf=dot(Ft_3',dZ3'); 
dWf2=dot(F3',dZ3'); 
check5=(dWf-dWf2)'; 
  
%CALCULATE K 
  
T=(((dWf)'+momz3).*d_Phi_Ctheta);%%% captheta in embedded in the 
Torque!!! 
T1=(((dWf)').*d_Phi_Ctheta); 
T2=((momz3).*d_Phi_Ctheta); 
check6=T1+T2-T; 
  
  
%Cap theta vs components of T 
figure(29) 
clf 
hold on 
plot(Theta(2:end)*180/pi,T1(2:end),'r') 
plot(Theta(2:end)*180/pi,T2(2:end),'b') 
plot(Theta(2:end)*180/pi,momz3(2:end),'g') 
  
%CALCULATE CONSTA Ktheta, KF, KM NONDIMENSIONALIZATION 
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Appendix F: (continued) 
  
Ttheta=(T*R*4*lambda)/(E*I); 
TF=(T1*R*4*lambda)/(E*I); 
TM=(T2*R*4*lambda)/(E*I); 
check7=TF+TM-Ttheta; 
  
[CsKTHE,s]=POLYFIT(Theta(2:end),Ttheta(2:end),2); 
[CsKf,s1]=POLYFIT(Theta(2:end),TF(2:end),1); 
[CsKm,s2]=POLYFIT(Theta(2:end),TM(2:end),2); 
  
KTHEf = polyval(CsKTHE,Theta); 
Kff = polyval(CsKf,Theta); 
Kmf = polyval(CsKm,Theta); 
  
%shows tah he function of Ttheta, Tm and Tf fits the data. 
figure(30) 
clf 
hold on 
plot(Theta(2:end)*180/pi ,Ttheta(2:end),'b') 
plot(Theta(2:end)*180/pi ,TF(2:end),'r') 
plot(Theta(2:end)*180/pi ,TM(2:end),'g') 
plot(Theta(2:end)*180/pi ,KTHEf(2:end),'b*') 
plot(Theta(2:end)*180/pi ,Kff(2:end),'r*') 
plot(Theta(2:end)*180/pi ,Kmf(2:end),'g*') 
  
  
%%%shows the behavior of K and Ktheta,  KF, KM 
figure(31) 
clf 
hold on 
plot(T(2:end),'r') 
plot(T1(2:end),'c') 
plot(T2(2:end),'k') 
plot(Ttheta(2:end),'b') 
plot(TF(2:end),'m') 
plot(TM(2:end),'g') 
  
%shows behavior of T and components wrt theta 
figure(32) 
clf 
hold on 
plot(Theta(2:end) ,Ttheta(2:end),'b') 
plot(Theta(2:end) ,TF(2:end),'r') 
plot(Theta(2:end) ,TM(2:end),'g') 
plot(Theta(2:end) ,dWf(2:end),'k') 
plot(Theta(2:end) ,momz3(2:end),'c') 
  
  
%%%Finds componets fuctions of Ttheta 
Km=Kmf*E*I./(R*4*lambda) 
Kf=Kff*E*I./(R^2*4*lambda) 
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Appendix F: (continued) 
  
%Find moment and force using componet function Km and Kf 
Mom=(Km.*d_Ctheta_Phi); 
Foc=(Kf.*d_Ctheta_Phi); 
  
%%%plots nondimenzionalized K componetss 
figure(33) 
clf 
hold on 
plot(TF(2:end),'r') 
plot(TM(2:end),'b') 
  
  
%%%plots function components of K theta 
figure(34) 
clf 
hold on 
plot(Kf(2:end),'r') 
plot(Km(2:end),'b') 
  
%plot moment from the data and the moment found using the model 
figure(35) 
clf 
hold on 
plot(Theta(2:end)*180/pi,Mom(2:end),'r') 
plot(Theta(2:end)*180/pi,momz3(2:end),'b') 
%plot(T2.*d_Ctheta_Phi,'k')%%%%ASK Dr. Lusk 
  
%plot force from the data and the force found using the model 
figure(36) 
clf 
hold on 
plot(Theta(2:end)*180/pi,Foc(2:end),'r') 
plot(Theta(2:end)*180/pi,Ftan(2:end),'b') 
%plot(T1/R.*d_Ctheta_Phi,'k') 
  
R  
h2 
E  
b2 
I  
lambda 
Cstheta 
Csgamma 
total_erroro  
CsKTHE 
CsKf 
CsKm 
  
%%%%TEST%%%%%%%%%%% 
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Appendix F: (continued) 
  
Ctheta2= acos((-
tan(PHI).*cot(Gamma*lambda)+1)./(1+tan(PHI).*tan(Gamma*lambda)));%%%usi
ng model or data? 
d_Ctheta_PHI=(sec(PHI)).^2./((sin(Ctheta2)./((cot(Gamma*lambda)+cos(Cth
eta2).*tan(Gamma*lambda)))+(((1-
cos(Ctheta2)).*(sin(Ctheta2).*tan(Gamma*lambda)))./((cot(Gamma*lambda)+
cos(Ctheta2).*tan(Gamma*lambda)).^2)))); 
d_PHI_Ctheta2=(sin(Ctheta2)./((sec(PHI)).^2.*(cot(Gamma*lambda)+cos(Cth
eta2).*tan(Gamma*lambda)))+(((1-
cos(Ctheta2)).*(sin(Ctheta2).*tan(Gamma*lambda)))./((sec(PHI)).^2.*(cot
(Gamma*lambda)+cos(Ctheta2).*tan(Gamma*lambda)).^2))); 
  
CsKf2=9.1455.*Ctheta2-1.4521.*ones(70,1); 
CsKm2=-2.4524.*Ctheta2.^2+3.5246.*Ctheta2-0.0498.*ones(70,1); 
CsKTHE2=-0.3244.*Ctheta2.^2+8.9923*Ctheta2-0.1640.*ones(70,1); 
  
errorf=(CsKf2-Kff)./Kff 
errorm=(CsKm2-Kmf)./Kmf 
errorKT=(CsKTHE2-KTHEf)./KTHEf 
  
Kf2=CsKf2.*E*I./(R^2*4*lambda); 
Km2=CsKm2.*E*I./(R*4*lambda); 
  
errorf2=(Kf2-Kf)./Kf 
errorm2=(Km2-Km)./Km 
  
Foc2=Kf2.*d_Ctheta_PHI; 
Mom2=Km2.*d_Ctheta_PHI; 
  
Theterr=(Ctheta2-Theta)./Theta 
Ferr=(Foc2-Foc)./Foc 
Merr=(Mom2-Mom)./Mom 
  
figure(37) 
clf 
hold on 
plot(Foc(2:end),'r') 
plot(Foc2(2:end),'b')%%%%need a constant? 
  
figure(38) 
clf 
hold on 
plot(Mom (2:end),'r') 
plot(Mom2(2:end),'b') 
  
figure(39) 
clf 
hold on 
plot(Ctheta2,Mom2,'r') 
plot(Ctheta2,Foc2,'b') 
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Appendix F: (continued) 
  
figure(40) 
clf 
hold on 
plot(Theta(2:end),Mom(2:end),'r') 
plot(Theta(2:end),Foc(2:end),'b') 
plot(Theta(2:end),Ftan(2:end),'g') 
plot(Theta(2:end),momz3(2:end),'k') 
plot(Ctheta2(2:end),Mom2(2:end),'r*') 
plot(Ctheta2(2:end),Foc2(2:end),'b*') 
  
Zout=[R*cos(pi/2-2*lambda+(2*PHI)) R*sin(pi/2-2*lambda+(2*PHI)) 
R*sin(2*beta)]%%%use full mode devided by 2 ask!! 
dZout=[-R*sin(pi/2-2*lambda+(2*PHI)) R*cos(pi/2-2*lambda+(2*PHI)) 
R*cos(2*beta)]; 
 %% 
 %%%THE END  
  
  
Csgamma 
B 
CI 
rsqrd 
total_erroro 
Cstheta 
CsKTHE 
CsKf 
CsKm 
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Appendix G: Tables of Summary of Results for a Specific Horizontal Buckling End-

Loaded Curved Beam 

 

Table G.1. Summary of results of curved beam with λ = 15°  
Constant γ 0.7781 

b-2 0.8105 ± 0.05847 
b-1 -0.0077 ± 0.02985 
b0 -0.0005 ± 0.00846 
b1 -0.0046  ± 0.06974 
b2 0.0001 ± 0.04877 

Coefficient of 
determination 

R2 

 
99.96% 

Total error 2.4977e-10% 
ϑC  1.2386 

θT  (Θ*) 0.8410Θ2+7.2766 Θ -0.0739  

fT  (Θ*) 8.7428Θ-0.6312  

mT  (Θ*) -0.0492Θ2+0.0746 Θ -0.0048  
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Appendix G: (continued) 
 

Table G.2. Summary of results of curved beam with λ = 30°  
Constant γ 0.7812 

b-2 0.7441 ± 0.1764 
b-1 0.0235 ± 0.0979 
b0 0.0235 ± 0.0312 
b1 0.0634 ± 0.1999 
b2 -0.0278 ± 0.1344 

Coefficient of 
determination 

R2 

 
99.92% 

Total error 1.4426e-8% 
ϑC  1.2451 

θT  (Θ*) 0.7486Θ2+7.4219 Θ -0.0909  

fT  (Θ*) 8.7603Θ-0.6694  

mT  (Θ*) -0.1973Θ2+0.2982 Θ -0.0183  

 
Table G.3. Summary of results of curved beam with λ = 45°  

Constant γ 0.7864 
b-2 0.4210 ± 0.3802 
b-1 0.1709 ± 0.2267 
b0 -0.0283 ± 0.0794 
b1 0.3792 ± 0.4098 
b2 -0.1446 ± 0.2647 

Coefficient of 
determination 

R2 

 
99.54% 

Total error 1.4710e-7% 
ϑC  1.2559 

θT  (Θ*) 0.6064Θ2+7.6418 Θ -0.1110  

fT  (Θ*) 8.7916Θ-0.7361 

mT  (Θ*) -0.4459Θ2+0.6701 Θ -0.0378 
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Appendix G: (continued) 
  

Table G.4. Summary of results of curved beam with λ = 60°  
Constant γ 0.7938 

b-2 -0.8429 ± 0.7203 
b-1 0.7667 ± 0.4555 
b0 -0.1280 ± 0.1718 
b1 1.5518 ± 0.7422 
b2 -0.5493 ± 0.4614 

Coefficient of 
determination 

R2 

 
98.89% 

Total error 7.3009e-7% 
ϑC  1.2711 

θT  (Θ*) 0.4304Θ2+7.9087 Θ -0.1287  

fT  (Θ*) 8.8415Θ-0.8413  

mT  (Θ*) -0.7980Θ2+1.1904 Θ -0.0600  

 
Table G.5. Summary of results of curved beam with λ = 75°  

Constant γ 0.8033 
b-2 -5.6781 ± 1.2942 
b-1 3.1644 ± 0.8605 
b0 -0.5591 ± 0.3448 
b1 5.8103 ± 1.2796 
b2 -1.9389 ± 0.7671 

Coefficient of 
determination 

R2 

 
98.6% 

Total error 2.4244e-6% 
ϑC  1.2908 

θT  (Θ*) 0.1990Θ2+8.2504 Θ -0.1502 

fT  (Θ*) 8.9062Θ-0.9835 

mT  (Θ*) -1.2459Θ2+1.8406 Θ -0.0743 
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Appendix G: (continued) 
  

Table G.6. Summary of results of curved beam with λ = 90°  
Constant γ 0.8148 

b-2 -26.4491 ± 2.2828 
b-1 14.0351 ± 1.5874 
b0 -2.6508 ± 0.6697 
b1 23.2103 ± 2.1709 
b2 -7.3468 ± 1.2565 

Coefficient of 
determination 

R2 

 
98.93% 

Total error 6.3645e-6% 
ϑC  1.3147 

θT  (Θ*) -0.0520Θ2+8.6129 Θ -0.1615  

fT  (Θ*) 9.0057Θ-1.1829 

mT  (Θ*) -1.7981Θ2+2.6234 Θ -0.0747  

 
Table G.7. Summary of results of curved beam with λ = 105°  

Constant γ 0.8281 
b-2 -142.1823 ± 4.1447 
b-1 78.0177 ± 3.0046 
b0 -15.7772 ± 1.3276 
b1 115.4554 ± 3.7958 
b2 -34.7151 ± 2.1215 

Coefficient of 
determination 

R2 

 
99.44% 

 
Total error 1.5795e-5% 

ϑC  1.3427 

θT  (Θ*) -0.3244Θ2+8.9923 Θ -0.1640  

fT  (Θ*) 9.1455 Θ-1.4521  

mT  (Θ*) -2.4524Θ2+3.5246 Θ -0.0498 
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